Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\((\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99})x=\frac{2}{3}\)
Đặt \(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{9.11}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{11}\right)\)
\(A=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)
Thay A vào biểu thức
\(\Rightarrow\frac{5}{11}x=\frac{2}{3}\)
\(\Rightarrow x=\frac{22}{15}\)
P/s: Có thể tính sai :(
\(\left[\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right]\times x=\frac{2}{3}\)
Trước tiên mình tính dãy có dấu ngoặc đã
Đặt : \(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(=\frac{1}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}\right]\)
\(=\frac{1}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\right]\)
\(=\frac{1}{2}\left[1-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{11}\right]\)
\(=\frac{1}{2}\left[1-\frac{1}{11}\right]=\frac{1}{2}\cdot\frac{10}{11}=\frac{1\cdot10}{2\cdot11}=\frac{1\cdot5}{1\cdot11}=\frac{5}{11}\)
Thay vào biểu thức \(S=\frac{5}{11}\)ta lại có :
\(\frac{5}{11}\times x=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{2}{3}:\frac{5}{11}\)
\(\Leftrightarrow x=\frac{2}{3}\cdot\frac{11}{5}\)
\(\Leftrightarrow x=\frac{22}{15}\)
Vậy \(x=\frac{22}{15}\)
Có: \(x=\dfrac{1}{9}+\dfrac{8}{116}=\dfrac{1}{9}+\dfrac{2}{29}=\dfrac{47}{261}\)
\(x-\left(\dfrac{2+2+2+2}{3+15+35+63}\right)=\dfrac{1}{9}\)
\(\Leftrightarrow x=\dfrac{1}{9}+\dfrac{2}{29}=\dfrac{47}{261}\)
#)Giải :
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{y\left(y+2\right)}=\frac{50}{101}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{y\left(y+2\right)}=\frac{50}{101}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{y}-\frac{1}{y+2}=\frac{50}{101}\)
\(1-\frac{1}{y+2}=\frac{50}{101}\)
\(\Leftrightarrow\frac{1}{y+2}=\frac{51}{101}\)
\(\Leftrightarrow y+2=\frac{101}{51}\)
\(\Leftrightarrow x=-\frac{1}{51}\)
\(x-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}-\frac{2}{63}=30\frac{1}{9}\)
\(x=31\)
\(30\frac{1}{9}\)= \(\frac{271}{9}\)
\(x-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}-\frac{2}{63}=\frac{271}{9}\)
\(x=\frac{271}{9}-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}\right)\)
\(x=\frac{263}{9}\)
~ Chúc bạn học tốt ~
a) (58 + x) : 5 = 18
58 + x = 18 x 5
58 + x = 90
x = 90 - 58
x = 32
d) 320 : x - 10 = 5 x 48 : 24
320 : x - 10 = 10
320 : x = 10 + 10
320 : x = 20
x = 320 : 20
x = 16
c) (1/15 + 1/35 + 1/63) . x = 1
1/9 . x = 1
x = 1 : 1/9
x = 9
\(A=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+.......\frac{1}{13x15}=\frac{1}{2}x\frac{2}{1x3}+\frac{2}{3x5}.......+\frac{2}{13x15}\)
\(A=\frac{1}{2}x\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}\right)\)
Còn lại em nhân giống ở trên nhé
Đặt A = 1/15 + 1/35 + ... + 1/3135
A = 1/3.5 + 1/5.7 + ... + 1/55.57
2A = 2/3.5 + 2/5.7 + ... + 2/55.57
2A = 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/55 - 1/57
2A = 1/3 - 1/57 = 6/19
A = 3/19
câu 1:
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)
\(\hept{\begin{cases}15=3\cdot5\\35=5\cdot7\end{cases}}\\ \hept{\begin{cases}3=3\\63=3^2\cdot7\\99=3^2\cdot11\end{cases}}\)
=>\(\frac{2310}{3465}+\frac{462}{3465}+\frac{198}{3465}+\frac{110}{3465}+\frac{70}{3465}\)
=>\(\frac{2310+462+198+110+70}{3465}\)
=>\(\frac{3150}{3465}\)=\(\frac{10}{11}\)
\(\Leftrightarrow\dfrac{4}{9}:x=\dfrac{8}{3}\)
hay \(x=\dfrac{4}{9}\cdot\dfrac{3}{8}=\dfrac{1}{2}\cdot\dfrac{1}{3}=\dfrac{1}{6}\)