Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
À mk thiếu . Định m để đn thẳng AB và d có điểm chung
Bạn xem lại đề. Xác định $m$ để đoạn thẳng $AB$ có điểm chung là như thế nào thế?
9. Cho đg thẳng d 3x +4y -5=0 và 2 điểm A(1;3) , B(2;m). Định m để A và B nằm cùng phía đối với d.
Hai điểm A và B nằm cùng phía với (d)
\(\Leftrightarrow\)(3.1+4.3-5).(3.2+4.m-5)>0
\(10\left(6+4m-5\right)>0\)
\(60+40m-50>0\Rightarrow m>-\frac{1}{4}\)
10. Cho tam giác ABC với A(1;3) , B(-2;4) ,C(-1;5) và đg thẳng d : 2x -3y +6=0. Đg thẳng d cắt cạnh nào của tg ABC?
(bạn xem lại đề)
11. Khoảng cách từ điểm M (1;-1) đến đg thẳng denta 3x -4y -17=0 là:
\(d_{\left(M,\Delta\right)}=\frac{\left|ax_0+by_0+c\right|}{\sqrt{a^2+b^2}}=\frac{\left|3.1-4.\left(-1\right)-17\right|}{\sqrt{3^2+\left(-4\right)^2}}\)\(=2\)
Câu 12,13 tương tự vậy
14. Khoảng cách từ điểm M(0;2) đến đg thẳng denta x =1 +3t ; y = 2+4t là:
\(\Delta:\left\{{}\begin{matrix}x=1+3t\\y=2+4t\end{matrix}\right.\)
PTTQ của delta:\(4x-3y+2=0\)
áp dụng ct:
\(d_{\left(M,\Delta\right)}=\frac{\left|ax_0+by_0+c\right|}{\sqrt{a^2+b^2}}=\frac{4}{5}\)
( bạn xem lại đáp án)
16. Tính diện tích tg ABC biết A(-2;1) , B(1;2) , C (2;-4)
sABC= 5,5
2 câu cuối mk cảm thấy hơi khó hỉu
bạn giảng lại đc hông
Thay tọa độ A vào vế trái pt d ta được: \(4-14+m=m-10\)
Thay tọa độ B vào vế trái pt d ta được: \(-12-28+m=m-40\)
Để d và AB có điểm chung \(\Leftrightarrow\) A và B nằm khác phía so với d
\(\Leftrightarrow\left(m-10\right)\left(m-40\right)< 0\Rightarrow10< m< 40\)
Đáp án A
Đường thẳng d và đoạn thẳng AB có điểm chung khi và chỉ khi 2 điểm A và B nằm về hai phía của đường thẳng d hoặc có điểm thuộc đường thẳng d.
Nên ( 4- 14+m) ( -12-28+ m) ≤ 0
Hay 10 ≤ m ≤ 40
Lời giải:
\(\overrightarrow{AB}=(-4,2)\)
\(\overrightarrow{u_d}=(2,-1)\)
Để 2 đường thẳng cắt nhau thì \(\frac{-4}{2}\neq \frac{2}{-1}\) (vô lý)
Do đó 2 đường thẳng không thể cắt nhau với mọi $m$. Đáp án D
PTTQ của d : \(1\left(x-m\right)+2\left(y-1\right)=0\)
\(\Leftrightarrow x+2y-m-2=0\)
Để d cắt AB thì A và B nằm khác phía so với d hoặc là một trong 2 điểm A và B nằm trên d . Nên ta có :
\(\left(1+4-m-2\right)\left(-3+8-m-2\right)\le0\)
\(\Leftrightarrow\left(-m+3\right)\left(-m+3\right)\le0\)
\(\Leftrightarrow m=3\)
Chọn B
1. Tìm cosin góc giữa 2 đg thẳng denta 1 : 10x +5y -1=0 và denta 2 : x = 2+t ; y = 1-t
\(\Delta\left(1\right):10x+5y-1=0\)
\(\Delta\left(2\right):\left\{{}\begin{matrix}x=2+t\\y=1-t\end{matrix}\right.\)
\(\Delta\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-\left(x-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-x+2\end{matrix}\right.\Leftrightarrow x+y-3=0\)
Ta có phương trình tổng quát của \(\Delta\left(2\right)\)là \(x+y-3=0\)
\(cos\left(\Delta\left(1\right),\Delta\left(2\right)\right)=\frac{\left|a_1.a_2+b_1.b_2\right|}{\sqrt{a_1^2+b_1^2}\sqrt{a_2^2+b_2^2}}\)
\(=\frac{\left|10+5\right|}{\sqrt{1+1}.\sqrt{100+25}}=\frac{15}{5\sqrt{10}}\)
Bấm SHIFT COS\(\left(\frac{15}{5\sqrt{10}}\right)\)=o'''
\(=18^o26'5,82''\)
bài 2,3,4 tương tự vậy.
Áp dụng công thức khoảng cách:
\(d\left(M;\Delta\right)=\frac{\left|3.1-4\left(-1\right)-17\right|}{\sqrt{3^2+4^2}}=\frac{10}{5}=2\)
13.
Áp dụng công thức khoảng cách:
\(d\left(M;\Delta\right)=\frac{\left|5.0-12.1-1\right|}{\sqrt{5^2+\left(-12\right)^2}}=1\)
6.
\(\overrightarrow{AB}=\left(-4;2\right)=-2\left(2;-1\right)\)
Phương trình AB:
\(1\left(x-1\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-5=0\)
Phương trình giao điểm: \(\left\{{}\begin{matrix}x+2y-5=0\\4x-7y+m=0\end{matrix}\right.\) \(\Rightarrow y=\frac{m+20}{15}\)
Để đường thẳng và đoạn AB có điểm chung
\(\Leftrightarrow2\le\frac{m+20}{15}\le4\Rightarrow10\le m\le40\)