Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=AB=15cm
MC=15-9=6cm
Xét ΔBACcó BM là phân giác
nên AM/AB=MC/BC
=>6/BC=9/15=3/5
=>BC=10cm
b: Xét ΔABM và ΔACN có
góc ABM=góc ACN
AB=AC
góc BAM chung
=>ΔABM=ΔACN
=>AM=AN
Xét ΔABC có AN/AB=AM/AC
nên MN//BC
c: Xét ΔABC cóMN//BC
nên AM/AC=MN/BC
=>MN/10=9/15=3/5
=>MN=6cm
vì tam giác ABC cân tại A (gt)
góc ABC=gócACB
=>\(\frac{ABC}{2}\)=\(\frac{ACB}{2}\)
=>\(\widehat{B_1}\)=\(\widehat{B_2}\)=\(\widehat{C_1}\)=\(\widehat{C_2}\)
(vì CN là phân giác \(\widehat{ACB}\):BM là phân giác \(\widehat{ABC}\))
xét tam giác ABM và tam giác ACN có
\(\widehat{B_1}\)=\(\widehat{C_1}\)
 chung
AB=AC(2 cạnh bên)
Do đó tam giác ABM=tam giác ACN(g.c.g)
=>AN=AM
=>tam giác AMN cân tại A
phần a thui mik nghĩ 2 phần còn lại đã
Xét ΔAMB và ΔANC
có ^BAC chung
AB=AC
^ABM=^ACN
suy ra
ΔAMB = ΔANC
suy ra NB=MC
AN=AM
Suy ra AN/NB=AM/MC
suy ra MN//BC
a) -△ABC có: BM, CN là các đường phân giác (gt)
\(\Rightarrow\dfrac{AN}{BN}=\dfrac{AC}{BC};\dfrac{AM}{BM}=\dfrac{AB}{BC}\) mà \(AB=AC\) (△ABC cân tại A)
\(\Rightarrow\dfrac{AN}{BN}=\dfrac{AM}{BM}\) nên MN//BC (định lí Ta-let đảo)
b) -Có: \(\dfrac{AN}{BN}=\dfrac{AC}{BC}\Rightarrow\dfrac{AN}{AC}=\dfrac{BN}{BC}=\dfrac{AN+BN}{AC+BC}=\dfrac{AB}{AC+BC}\)
\(\Rightarrow AN=\dfrac{AB.AC}{AC+BC}=\dfrac{a.a}{a+b}=\dfrac{a^2}{a+b}\)
-△ABC có: MN//BC (cmt)
\(\Rightarrow\dfrac{MN}{BC}=\dfrac{AN}{AB}\) (hệ quả định lí Ta-let)
\(\Rightarrow MN=\dfrac{AN.BC}{AB}=\dfrac{\dfrac{a^2}{a+b}.b}{a}=\dfrac{ab}{a+b}\)