Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(=\dfrac{7}{9}\left(\dfrac{7}{6}-\dfrac{19}{20}-\dfrac{1}{15}\right)+\dfrac{22}{5}\cdot\dfrac{1}{24}\)
\(=\dfrac{7}{9}\cdot\dfrac{3}{20}+\dfrac{22}{120}=\dfrac{7}{60}+\dfrac{11}{60}=\dfrac{18}{60}=\dfrac{3}{10}\)
b: \(=\left(\dfrac{35-32}{60}\right)^2+\dfrac{4}{5}\cdot\dfrac{70-45}{80}\)
\(=\dfrac{1}{400}+\dfrac{4\cdot25}{400}=\dfrac{101}{400}\)
a) \(100+98+96+...+2-97-95-93-...-3\)
= \(100+98+\left(96-97\right)+\left(94-95\right)+...+\left(2-3\right)\)
= \(100+98-95\) = \(103\)
b) \(2-4-6+8+10-12-14+16+...-102+104\)
= \(\left(2-4\right)+\left(-6+8\right)+\left(10-12\right)+\left(-14+16\right)+...+\left(-102+104\right)\)
= \(-2+2-2+2-2+...+2\) = \(0\)
c) \(1+2-3-4+5+6-7-8+9+10-11-12+...-111-112+113+114\)
= \(\left(1+2\right)-\left(3+4\right)+\left(5+6\right)-\left(7+8\right)+...\left(113+114\right)\)
= \(3-7+11-15+19-23+...+219-223+227\)
= \(\left(3-7\right)+\left(11-15\right)+\left(19-23\right)+...+\left(219-223\right)+227\)
= \(-4-4-4-4-...-4+227\)
= \(54\left(-4\right)+227\) = \(-216+227\) = \(11\)
8.
\(\Leftrightarrow sin^4x-cos^2x=2sinx.cosx\)
Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^4x\) ta được:
\(tan^4x-\dfrac{1}{cos^2x}=2tanx.\dfrac{1}{cos^2x}\)
\(\Leftrightarrow tan^4x-\left(1+tan^2x\right)=2tanx\left(1+tan^2x\right)\)
\(\Leftrightarrow tan^4x-2tan^3x-tan^2x-2tanx-1=0\)
Wel well, đề bài sai, phương trình bậc 4 này không giải được
Hờ, bài toán này mà mình cứ ngồi tính tổng như thật -,-
\(\text{1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - 12 + ... - 111 - 112 + 113 + 114}\)\(=1+\left(2-3-4+5\right)+\left(6-7-8+9\right)+\left(10-11-12+13\right)+...+\left(110-111-112+113\right)+114\)\(=1+114=115\)
Lớp 5: chương trình nâng cao nhé các bạn! ko có số âm nhé!
Bài 4:
\(u_n=5.\left(\frac{1}{2}\right)^{2n-1}=10.\left(\frac{1}{2}\right)^{2n}=10\left(\frac{1}{4}\right)^n\)
Là cấp số nhân với \(u_1=10\) và công bội \(q=\frac{1}{4}\)
Bài 5:
\(S_5=u_1.\frac{q^4-1}{q-1}=u_1.\frac{\left(\frac{1}{3}\right)^4-1}{\frac{1}{3}-1}=\frac{121}{81}u_1\)
\(\Rightarrow u_1=\frac{81}{121}S_5=81\)
Bài 6:
\(\left\{{}\begin{matrix}u_1q=4\\u_1q^3=9\end{matrix}\right.\) \(\Rightarrow\left(u_1q^2\right)^2=36\Rightarrow\left[{}\begin{matrix}u_1q^2=6\\u_1q^2=-6\end{matrix}\right.\)
Mà \(u_3=u_1q^2\Rightarrow u_3=\pm6\)
Bài 2:
\(\left\{{}\begin{matrix}u_1q^3-u_1q=24\\u_1q^2-u_1=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1q\left(q^2-1\right)=24\\u_1\left(q^2-1\right)=12\end{matrix}\right.\)
\(\Leftrightarrow\frac{u_1q\left(q^2-1\right)}{u_1\left(q^2-1\right)}=\frac{24}{12}\Rightarrow q=2\Rightarrow u_1=\frac{12}{q^2-1}=4\)
\(\Rightarrow S_8=u_1.\frac{q^8-1}{q-1}=4\left(2^8-1\right)=...\)
Câu 3:
\(u_{10}=u_1q^9=4\left(-2\right)^9=-2^{11}\)
\(S_{15}=u_1.\frac{q^{15}-1}{q-1}=4.\frac{\left(-2\right)^{15}-1}{-3}=\frac{3}{4}\left(2^{15}+1\right)\)