K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2019

1+2+3+...+x=500500

\(\Rightarrow\)(1+x)x:2=500500

\(\Rightarrow\)(1+x)x=1001000

Mà x(x+1) là tích của 2 số tự nhiên liên tiếp.

Vì 1001000=1000.1001

\(\Rightarrow\)x=1000

Vậy x=1000

12 tháng 10 2023

\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+30\right)=500\)

Số lượng số hạng là: \(30-1+1=30\)

\(\Rightarrow30x+\dfrac{30\left(30+1\right)}{2}=500\)

\(30x+465=500\)

\(30x=35\)

\(x=\dfrac{7}{6}\)

12 tháng 10 2023

\(\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=500\)

\(\Rightarrow x+1+x+2+..+x+30=500\)

\(\Rightarrow\left(x+x+...+x\right)+\left(1+2+...+30\right)=500\)

\(\Rightarrow30\cdot x+465=500\)

\(\Rightarrow30\cdot x=500-465\)

\(\Rightarrow30\cdot x=35\)

\(\Rightarrow x=\dfrac{35}{30}\)

\(\Rightarrow x=\dfrac{7}{6}\)

3 tháng 9 2021

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{499}{500}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{499}{500}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{499}{500}\)

\(\Leftrightarrow x=499\)

3 tháng 9 2021

giúp e vs

 

 

20 tháng 8 2016

\(\frac{1}{500}+\frac{3}{500}+\frac{5}{500}+...+\frac{97}{500}+\frac{99}{500}\)

\(=\frac{1+3+5+...+97+99}{500}\)

          Ta có:Số số hạng từ 1 đến 99 là:
                        (99-1):2+1=50(số hạng)

                     Tổng dãy số từ 1 đến 99 là:
                          (99+1).50:2=2500

Do đó:\(=\frac{1+3+5+...+97+99}{500}\)

           \(=\frac{2500}{500}\)

           =5

Vậy \(\frac{1}{500}+\frac{3}{500}+\frac{5}{500}+...+\frac{97}{500}+\frac{99}{500}\)=5

20 tháng 8 2016

\(\frac{1}{500}+\frac{3}{500}+\frac{5}{500}+...+\frac{95}{500}+\frac{99}{500}\)

          =   \(\frac{1+3+5+...+95+99}{500}\)

          =            \(\frac{2500}{500}\)

 \(\Rightarrow\)\(\frac{1}{500}+\frac{3}{500}+\frac{5}{500}+...+\frac{95}{500}+\frac{99}{500}\)=\(5\)

{ Tích cho mình với nhaok}

\(A=\frac{1}{500}+\frac{3}{500}+\frac{5}{500}+...+\frac{97}{500}+\frac{99}{500}\)

\(A=\frac{1+3+5+...+97+99}{500}\)

Số các số hạng của tử là:

(99-1):2+1=50 số

\(=>A=\frac{\left(1+99\right).50:2}{500}\)

\(=>A=\frac{2500}{500}=5\)

 

1 tháng 8 2015

\(A=\frac{1}{500}+\frac{3}{500}+\frac{5}{500}+...+\frac{97}{500}+\frac{99}{500}\)

\(\Rightarrow A=\frac{1+3+5+..+97+99}{500}\)

\(\Rightarrow A=\frac{100.50:2}{500}\)

\(\Rightarrow A=\frac{2500}{500}\)

\(\Rightarrow A=5\)

7 tháng 6 2017

\(\dfrac{1}{500}+\dfrac{3}{500}+\dfrac{5}{500}+...+\dfrac{95}{500}+\dfrac{97}{500}+\dfrac{99}{500}\)

\(=\left(\dfrac{1}{500}+\dfrac{99}{500}\right)+\left(\dfrac{3}{500}+\dfrac{97}{500}\right)+\left(\dfrac{5}{500}+\dfrac{95}{500}\right)+...\)

\(=\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{5}+...\) ( 50 số )

\(=\dfrac{1}{5}.50\)

\(=10\)

7 tháng 6 2017

Nguyễn Huy TúAce Legonasoyeon_Tiểubàng giảiTrần Việt Linh

Võ Đông Anh TuấnHoàng Lê Bảo NgọcPhương An