Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1-1/2 + 1/3-1/4 + 1/5-1/6 + ..... 1/499-1/500 = (1 + 1/3 + 1/5 + ..+ 1/499) - (1/2 + 1/4 + 1/6 + ...+ 1/500) - (1/2 + 1/4 + 1/6 + ...+ 1/500) + (1/2 + 1/4 + 1/6 + ...+ 1/500) S = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500) - 2.(1/2 + 1/4 + 1/6 + ...+ 1/500) = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500)- (1 + 1/2 + 1/3 + ...+1/250) = 1/251 + 1/252 + ...+ 1/500.
Vậy S = 1/251 + 1/252 + ...+ 1/500
S = 1-1/2 + 1/3-1/4 + 1/5-1/6 + ..... 1/499-1/500
= (1 + 1/3 + 1/5 + ..+ 1/499) - (1/2 + 1/4 + 1/6 + ...+ 1/500) - (1/2 + 1/4 + 1/6 + ...+ 1/500) + (1/2 + 1/4 + 1/6 + ...+ 1/500)
S = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500) - 2.(1/2 + 1/4 + 1/6 + ...+ 1/500)
= (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500)- (1 + 1/2 + 1/3 + ...+1/250)
= 1/251 + 1/252 + ...+ 1/500.
Vậy S = 1/251 + 1/252 + ...+ 1/500
\(\frac{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}}{500-\frac{500}{501}-\frac{501}{502}-...-\frac{999}{1000}}=\frac{\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{999}-\frac{1}{1000}\right)}{500-\left(1-\frac{1}{501}\right)-\left(1-\frac{1}{502}\right)-...-\left(1-\frac{1}{1000}\right)}\)
hình như cái mẫu bạn ghi dấu sai thì phải, còn tử thì mình lười làm lắm
tử bạn tính ra 1/2+1/12+...+1/999 000 sau đó phân tích ra là
khó thật
nhớ L-I-K-E nhe tại vì cậu bảo giúp mình, mình cho đúng liền
ta có:
1-1/2+1/2-1/3+1/3-1/4+....+1/x -1/x+1 =499/500
1-1/x+1 =499/500
1/x+1 =1/500
x+1=500
x=499
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{X\times\left(X+1\right)}=\frac{499}{500}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{X}-\frac{1}{X+1}=\frac{499}{500}\)
\(\Leftrightarrow1-\frac{1}{X+1}=\frac{499}{500}\)
\(\Leftrightarrow\frac{1}{X+1}=\frac{1}{500}\)
\(\Leftrightarrow X+1=500\)
\(\Leftrightarrow X=499\)
mk k chép lại đề bài đâu, làm lun đó
A=1/2*2/3*3/4*4/5*...*99/100
sau đó n=dễ ợt mà