Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + ... + 1/110
B = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + .... + 1/10.110
B = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/10 - 1/11
B = 1 - 1/11
B = 10/11
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\)
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\)
= \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\)
= 1 - 1/2 + 1/2 - 1/3 + ... + 1/10 - 1/11
= 1 - 1/11
= 10/11
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
Tham khảo nhé~
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{110}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
A=1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+...+1/(10*11)
A=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/10-1/11
A=1/2-1/11
A=9/22
Đặt biểu thức là A. A có 10 số hạng.
A = 1/2+5/6+11/12+19/20+...+109/110.
A = (1-1/2) + (1-1/6) + ...+(1-1/110)
A = 1+1+1+...+1(10 số 1) - (\(\frac{1}{2}\)+\(\frac{1}{6}\)+...+\(\frac{1}{110}\))
A=10-B
B = \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{10.11}\)
B = \(\frac{2-1}{1.2}\)+\(\frac{3-2}{2.3}\)+\(\frac{4-3}{3.4}\)+...+\(\frac{11-10}{10.11}\)
B=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{10}\)-\(\frac{1}{11}\)
B=1-\(\frac{1}{11}\)=\(\frac{10}{11}\)
⇒A=10-B=10-\(\frac{10}{11}\)=\(\frac{100}{11}\)
Ta có: \(\left|x+\frac{1}{2}\right|\ge0;\left|x+\frac{1}{6}\right|\ge0;...;\left|x+\frac{1}{110}\ge0\right|\)
=> \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{100}\right|\ge0\)
=> 11x \(\ge\)0 => x\(\ge\)0
=> \(x+\frac{1}{2}>0;x+\frac{1}{6}>0;...;x+\frac{1}{110}>0\)
=> \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{6}\right|=x+\frac{1}{6};...;\left|x+\frac{1}{110}\right|=x+\frac{1}{110}\)
=> \(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{110}\right)=11x\)
=> 10x + \(\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=11x\)
=> 10x + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)\)= 11x
=> 10x + \(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)= 11x
=> 10x + \(\frac{10}{11}\)= 11x
=> x = \(\frac{10}{11}\)
Vậy x = \(\frac{10}{11}\)
Đặt tổng trân là A
Ta có A=1/2x3+1/3x4+...+1/10x11
A=1/2-1/3+1/3-1/4+...+1/10-1/11
Sau khi rút gọn ta được A=1/2-1/11
A=9/22
\(\frac{1}{2}\) + \(\frac{1}{6}\) + \(\frac{1}{12}\) + ............ + \(\frac{1}{90}\) + \(\frac{1}{110}\)
= \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ............ + \(\frac{1}{9.10}\) + \(\frac{1}{10.11}\)
= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) + ................. + \(\frac{1}{9}\) - \(\frac{1}{10}\) + \(\frac{1}{10}\) - \(\frac{1}{11}\)
= 1 - \(\frac{1}{11}\)
= \(\frac{10}{11}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{10\cdot11}\)
=1-1/2+1/2-1/3+1/3-1/4+...+1/10-1/11
=1-1/11=10/11
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{10.11}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=1-\dfrac{1}{11}=\dfrac{10}{11}\)