Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề chút : Tính nhanh 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 1997 - 1998 - 1999 + 2000 + 2001
1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 1997 - 1998 - 1999 + 2000 + 2001
= ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ... + ( 1997 - 1998 - 1999 + 2000 ) + 2001
= 0 + 0 + ... + 0 + 2001
= 2001
1, S1 = (-2) + (-2) +..+ (-2).
Có SS (-2) là :
(1997 - 1) : 4 +1 = 500 (số ).
Tổng số (-2) là: 500 x (-2) = (-1000)
Bạn chờ mình làm tiếp nha
Các bạn ơi làm giúp mình vs ạ,mình đang cần gấp lắm rồi!!!!HELP MEEEEEEEEEEEEEE
Ở mẫu số, bạn tách 1999/1 thaanhf 1999 số 1, sau đó nhóm với các số hạng khác, kết quả là mẫu gấp 2000 laf tử
Vậy E=1/2000
a) \(A=1+\left(-3\right)+5+\left(-7\right)+...+\left(-1999\right)+2001\)
Số số hạng của tổng trên là: \(\frac{2001-1}{2}+1=1001\).
\(A=\left[1+\left(-3\right)\right]+\left[5+\left(-7\right)\right]+...+\left[1997+\left(-1999\right)\right]+2001\)
\(A=-2.500+2001\)
\(A=1001\)
b) \(1+\left(-2\right)+\left(-3\right)+4+5+\left(-6\right)+\left(-7\right)+8+...+1997+\left(-1998\right)+\left(-1999\right)+2000\)
\(=\left\{\left[1+\left(-2\right)\right]+\left[\left(-3\right)+4\right]\right\}+...+\left\{\left[1997+\left(-1998\right)\right]+\left[\left(-1999\right)+2000\right]\right\}\)
\(=\left(-1+1\right)+\left(-1+1\right)+...+\left(-1+1\right)\)
\(=0+0+...+0=0\)
Đặt A=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+....+\frac{1}{1999}}\)
Xét mẫu số:
\(\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+\frac{1996}{4}+....+\frac{1}{1999}\)
=\(\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+\left(\frac{1996}{4}+1\right)+....+\left(\frac{1}{1999}+1\right)+1\)
=\(\frac{2000}{2}+\frac{2000}{3}+\frac{2000}{4}+....+\frac{2000}{1999}+\frac{2000}{2000}\)
= 2000\(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{1999}+\frac{1}{2000}\right)\)
=> A = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}\right)}\)
=> A = \(\frac{1}{2000}\)