Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S
b) S
c) Đ
Tick mình nha Nguyễn Hà Thảo Vy làm ơn nhé!
Bài 1:
\(A=\dfrac{-1}{3}+1+\dfrac{1}{3}=1\)
\(B=\dfrac{2}{15}+\dfrac{5}{9}-\dfrac{6}{9}=\dfrac{2}{15}-\dfrac{1}{9}=\dfrac{18-15}{135}=\dfrac{3}{135}=\dfrac{1}{45}\)
\(C=\dfrac{-1}{5}+\dfrac{1}{4}-\dfrac{3}{4}=\dfrac{-1}{5}-\dfrac{1}{2}=\dfrac{-7}{10}\)
Bài 2:
a: \(=\dfrac{1}{5}+\dfrac{1}{2}+\dfrac{2}{5}-\dfrac{3}{5}+\dfrac{2}{21}-\dfrac{10}{21}+\dfrac{3}{20}\)
\(=\left(\dfrac{1}{5}+\dfrac{2}{5}-\dfrac{3}{5}\right)+\left(\dfrac{2}{21}-\dfrac{10}{21}\right)+\left(\dfrac{1}{2}+\dfrac{3}{20}\right)\)
\(=\dfrac{-8}{21}+\dfrac{13}{20}=\dfrac{113}{420}\)
b: \(B=\dfrac{21}{23}-\dfrac{21}{23}+\dfrac{125}{93}-\dfrac{125}{143}=\dfrac{6250}{13299}\)
Bài 3:
\(\dfrac{7}{3}-\dfrac{1}{2}-\left(-\dfrac{3}{70}\right)=\dfrac{7}{3}-\dfrac{1}{2}+\dfrac{3}{70}=\dfrac{490}{210}-\dfrac{105}{210}+\dfrac{9}{210}=\dfrac{394}{210}=\dfrac{197}{105}\)
\(\dfrac{5}{12}-\dfrac{3}{-16}+\dfrac{3}{4}=\dfrac{5}{12}+\dfrac{3}{16}+\dfrac{3}{4}=\dfrac{20}{48}+\dfrac{9}{48}+\dfrac{36}{48}=\dfrac{65}{48}\)
Bài 4:
\(\dfrac{3}{4}-x=1\)
\(\Rightarrow-x=1-\dfrac{3}{4}\)
\(\Rightarrow x=-\dfrac{1}{4}\)
Vậy: \(x=-\dfrac{1}{4}\)
\(x+4=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{5}-4\)
\(\Rightarrow x=-\dfrac{19}{5}\)
Vậy: \(x=-\dfrac{19}{5}\)
\(x-\dfrac{1}{5}=2\)
\(\Rightarrow x=2+\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{11}{5}\)
Vậy: \(x=\dfrac{11}{5}\)
\(x+\dfrac{5}{3}=\dfrac{1}{81}\)
\(\Rightarrow x=\dfrac{1}{81}-\dfrac{5}{3}\)
\(\Rightarrow x=-\dfrac{134}{81}\)
Vậy: \(x=-\dfrac{134}{81}\)
a)\(A=a\left(a-3\right)+15\)
với a=3n=>\(\hept{\begin{cases}a\left(a-3\right)⋮9\\15:9du6\end{cases}\Rightarrow A}\)không chia hết cho 9
Với a=3n+1=> A=3n(3n-2)=9n^2-6n+15=9(n^2+1)-6(n-1) vậy nếu n=10 chia hết cho 9=> Đề sai
Vì a∈Za∈Z nên suy ra, ta có các trường hợp sau:
+)TH1:a=3k(k∈Z):+)TH1:a=3k(k∈Z):
Ta có:(a–1).(a+2)+12=(3k–1).(3k+2)+12(a–1).(a+2)+12=(3k–1).(3k+2)+12
Vì (3k–1).(3k+2)(3k–1).(3k+2) không chia hết cho 3,123,12 chia hết cho 33 nên suy ra:
(3k–1).(3k+2)+12(3k–1).(3k+2)+12 không chia hết cho 33
=>(3k–1).(3k+2)+12=>(3k–1).(3k+2)+12 không chia hết cho 9(1)9(1)
+)TH2:a=3k+1(k∈Z):+)TH2:a=3k+1(k∈Z):
Ta có:(a–1).(a+2)+12=3k.(3k+3)+12=9.k.(k+1)+12(a–1).(a+2)+12=3k.(3k+3)+12=9.k.(k+1)+12
Vì 9.k.(k+1)9.k.(k+1) chia hết cho 9,129,12 không chia hết cho 99 nên suy ra:
9.k.(k+1)+129.k.(k+1)+12 không chia hết cho9(2)9(2)
+)TH3:a=3k+2(k∈Z):+)TH3:a=3k+2(k∈Z):
Ta có:(a–1).(a+2)+12=(3k+1).(3k+4)+12(a–1).(a+2)+12=(3k+1).(3k+4)+12
Vì (3k+1).(3k+4)(3k+1).(3k+4) không chia hết cho 3,123,12 chia hết cho 33 nên suy ra:
(3k+1).(3k+4)+12(3k+1).(3k+4)+12 không chia hết cho 33
=>(3k+1).(3k+4)=>(3k+1).(3k+4) không chia hết cho 9(3)9(3)
Từ (1),(2),(3)(1),(2),(3) suy ra: (a–1).(a+2)+12(a–1).(a+2)+12 không chia hết cho 9
=>(a–1).(a+2)+12=>(a–1).(a+2)+12 không phải là bội của 9.
moi a thuoc Z, ta cho A = {-1;0;1}
a) {(-1)-1}*{(-1)+2}+12 = 10 k la boi cua 9
( 0 - 1 ) * ( 0+2)+12=10 k la boi cua 9
(1-1) * ( 1 + 2 ) + 12 = 12 k la boi cua 9
b){ ( -1) + 2 } * { ( -1 + 9 } + 21 = 29 k la boi cua 49
(0+2)*(0+9)+21=39 k la boi cua 49
(1+2)*(1+9)+21=51 k la boi cua 49
nho chon cau tra loi cua mik nha
Bài a. Giả sử có số nguyên a đề (a-1)(a+2) +12 là bội của 9
Khi đó (a-1)(a+2) +12 = a2 + a + 10 = a2 + a + 1 + 9 chia hết cho 9
Hay a2 + a + 1 = 9k suy ra 4a2 + 4a + 4 = 36k
(2a+1)2 = 36k - 3 = 3 (12k - 1)
suy ra 12k - 1 chia hết cho 3 (vô lý)
Vậy.....không là bội của 9
Ai mà tính nổi