Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi cho mình hỏi từ sau chỗ \(\frac{1}{2004.2003}\)là dấu trừ hết ạ? Nếu là dấu cộng thì mình làm được :33
A = 7/7.17 + 7/17.27 + 7/27.37 + ............ +7/1997.2007
A=7/10 ( 10/7.17 + 10/17.27 + 10/27.37 + ................+10/1997.2007)
A= 7/10 ( 1/7 -1/17 + 1/17 - 1/27 + 1/27 - 1/37 +...............+ 1/1997 - 1/2007)
A= 7/10 (1/7 - 1/2007)
A= 7/10 . 2000/14049
A=200/2007
bây h mk có vc rùi tích đúng nha tối mk lm típ cho
\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}=\dfrac{1}{2014}-\left(\dfrac{1}{2013.2014}+\dfrac{1}{2012.2013}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)=\dfrac{1}{2014}-\left(\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2012}-\dfrac{1}{2013}+...+\dfrac{1}{2}-\dfrac{1}{3}+1-\dfrac{1}{2}\right)=\dfrac{1}{2014}-\left(1-\dfrac{1}{2014}\right)=\dfrac{1}{2014}-\dfrac{2013}{2014}=-\dfrac{1006}{1007}\)
=1/2014-(1/1*2+1/2*3+...+1/2013*2014)
=1/2014-(1-1/2+1/2-1/3+...+1/2013-1/2014)
=1/2014-1+1/2014
=1/1007-1=-1006/1007
\(\dfrac{1}{2003.2002}-\dfrac{1}{2002.2001}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
= \(\dfrac{1}{2003.2002}-\left(\dfrac{1}{2002.2001}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
= \(\dfrac{1}{2003.2002}-\left(\dfrac{1}{2002}-\dfrac{1}{2001}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-1\right)\)
= \(\dfrac{1}{2003.2002}-\dfrac{1}{2002}+1\)
= \(\dfrac{1-2003+2003.2002}{2003.2002}\)
= \(1-\dfrac{2002}{2003.2002}=1-\dfrac{1}{2003}\) = \(\dfrac{2002}{2003}\)
a) \(\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\left(\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
đặt \(A=\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
\(A=1-\frac{1}{99}\)
\(A=\frac{98}{99}\)
thay A vào, ta được :
\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)
b) \(\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)
\(=\frac{2}{100.99}-\left(\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\right)\)
đặt \(A=\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\)
\(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{98.99}\)
\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)
\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(A=2.\left(1-\frac{1}{99}\right)\)
\(A=2.\frac{98}{99}\)
\(A=\frac{196}{99}\)
Thay A vào, ta được :
\(\frac{2}{100.99}-\frac{196}{99}=\frac{-19598}{9900}\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{100}-\dfrac{99}{100}=-\dfrac{49}{50}\)
Ta có : \(\dfrac{1}{2006.2005}+....+\dfrac{1}{3.2}+\dfrac{1}{2.1}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2005.2006}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{2005}-\dfrac{1}{2006}\)
\(=1-\dfrac{1}{2006}=\dfrac{2005}{2006}\)