K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

\(\sum_{k=1}^nC^k_{2n+1}=2^{20}-1\)

\(\frac{\sum_{k=1}^n\left(2C^k_{2n+1}\right)+1+1}{2}=2^{20}\)

\(C^0_{2n+1}+\sum_{k=1}^n\left(C^k_{2n+1}+C_{2n+1}^{2n+1-k}\right)+C^{2n+1}_{2n+1}=2^{21}\)

\(\sum_{k=0}^{2n+1}C^k_{2n+1}=2^{21}\)

\(\Rightarrow2n+1=21\Rightarrow n=10\)

Số hạng chứa \(x^{26}\) có dạng là:

\(C^k_{10}.\left(\frac{1}{x^4}\right)^k.\left(x^7\right)^{10-k}\Rightarrow-4k+7.\left(10-k\right)=26\)

\(\Rightarrow k=4\)

hệ số của \(x^{26}\) là:

\(C^4_{10}=210\)

27 tháng 11 2021

dạ chỉ em cái dòng số 3 sao ra 21 nha, em ko biết .. oho

6 tháng 11 2019

chỉ mk cách làm với @Nguyễn Việt Lâm

NV
6 tháng 11 2019

Xét khai triển:

\(\left(x+1\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1x+C_{2n+1}^2x^2+...+C_{2n+1}^{2n+1}x^{2n+1}\)

Cho \(x=1\) ta được:

\(2^{2n+1}=C_{2n+1}^0+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n+1}\)

\(=1+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n+C_{2n+1}^{n+1}+...+C_{2n+1}^{2n}+1\)

\(=1+C_{2n+1}^1+...+C_{2n+1}^n+C_{2n+1}^n+...+C_{2n+1}^1+1\)

\(=2\left(1+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n\right)\)

\(\Rightarrow2^{2n}-1=C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n\)

\(\Rightarrow2^{2n-1}=2^{20}-1\Rightarrow2n=20\Rightarrow n=10\)

Khai triển: \(\left(x^2-x-1\right)^{10}\)

\(\left\{{}\begin{matrix}k_0+k_1+k_2=10\\k_1+2k_2=6\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_1;k_2\right)=\left(4;6;0\right);\left(5;4;1\right);\left(6;2;2\right);\left(7;0;3\right)\)

Hệ số của \(x^6:\)

\(\frac{10!}{4!.6!}+\frac{10!}{5!.4!}.\left(-1\right)^5+\frac{10!}{6!.2!.2!}+\frac{10!}{7!.3!}.\left(-1\right)^7\)

20 tháng 12 2022

Câu 2:

\(\Leftrightarrow\dfrac{\left(n+2\right)!}{2!\cdot n!}-4\cdot\dfrac{\left(n+1\right)!}{n!\cdot1!}=2\left(n+1\right)\)

\(\Leftrightarrow\dfrac{\left(n+1\right)\left(n+2\right)}{2}-4\cdot\dfrac{n+1}{1}=2\left(n+1\right)\)

\(\Leftrightarrow\left(n+1\right)\left(n+2\right)-8\left(n+1\right)=4\left(n+1\right)\)

=>(n+1)(n+2-8-4)=0

=>n=-1(loại) hoặc n=10

=>\(A=\left(\dfrac{1}{x^4}+x^7\right)^{10}\)

SHTQ là: \(C^k_{10}\cdot\left(\dfrac{1}{x^4}\right)^{10-k}\cdot x^{7k}=C^k_{10}\cdot1\cdot x^{11k-40}\)

Số hạng chứa x^26 tương ứng với 11k-40=26

=>k=6

=>Số hạng cần tìm là: \(210x^{26}\)

NV
9 tháng 11 2021

Giả thiết tương đương:

\(C_{2n+1}^{n+1}+C_{2n+1}^{n+2}+...+C_{2n+1}^{2n}+C_{2n+1}^{2n+1}=2^{100}\) (thay \(1=C_{2n+1}^{2n+1}\))

Mặt khác:

\(C_{2n+1}^{2n+1}=C_{2n+1}^0\)

\(C_{2n+1}^{2n}=C_{2n+1}^1\)

....

\(C_{2n+1}^{n+1}=C_{2n+1}^n\)

Cộng vế:

\(\Rightarrow C_{2n+1}^{n+1}+C_{2n+1}^{n+2}+...+C_{2n+1}^{2n+1}=C_{2n+1}^0+C_{2n+1}^1+...+C_{2n+1}^n\)

\(\Rightarrow2\left(C_{2n+1}^{n+1}+...+C_{2n+1}^{2n+1}\right)=C_{2n+1}^0+C_{2n+1}^1+...+C_{2n+1}^{2n+1}\)

\(\Rightarrow2.2^{100}=2^{2n+1}\) (đẳng thức cơ bản: \(\sum\limits^n_{k=0}C_n^k=2^n\))

\(\Leftrightarrow2^{101}=2^{2n+1}\)

\(\Rightarrow2n+1=101\)

\(\Rightarrow n=50\)

SHTQ trong khai triển: \(C_{50}^k.\left(x^{-3}\right)^k.\left(x^2\right)^{50-k}=C_{50}^kx^{100-5k}\)

\(100-5k=20\Rightarrow k=16\)

Hệ số: \(C_{50}^{16}\)

23 tháng 11 2016

sao lại C32n+1 nhỉ

23 tháng 11 2016

3 ở trên 2n+1 ở dưới đó b

 

13 tháng 11 2021

Ta có:

\(2A_n^2=C_{n-1}^2+C_{n-1}^3\) \(\left(n\ge4\right)\)

\(\Rightarrow2\cdot\dfrac{n!}{\left(n-2\right)!}=\dfrac{\left(n-1\right)!}{2!\left(n-1-2\right)!}+\dfrac{\left(n-1\right)!}{3!\left(n-1-3\right)!}\)

\(\Rightarrow2\cdot n\left(n-1\right)=\dfrac{\left(n-1\right)\left(n-2\right)}{4}+\dfrac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{6}\)

\(\Rightarrow2n=\dfrac{n-2}{4}+\dfrac{\left(n-2\right)\left(n-3\right)}{6}\)

\(\Rightarrow n=14\) hoặc \(n=0\left(loại\right)\)

Với n=14 ta có khai triển:

\(\left(x^2-\dfrac{1}{x^2}\right)^{14}=\sum\limits^{14}_{k=0}\cdot C_{14}^k\cdot\left(x^2\right)^{14-k}\cdot\left(\dfrac{1}{x^2}\right)^k\)

                      \(=C_{14}^k\cdot x^{28-4k}\)

Số hạng không chứa x: \(\Rightarrow28-4k=0\Rightarrow k=7\)

Vậy số hạng không chứa x trong khai triển là:

\(C_{14}^7\cdot x^{28-4\cdot7}=C_{14}^7=3432\)

NV
10 tháng 4 2020

Xét khai triển

\(\left(x+1\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1x+...+C_{2n+1}^{2n}x^{2n}+C_{2n+1}^{2n+1}x^{2n+1}\)

Cho \(x=1\) ta được:

\(2^{2n+1}=C^0_{2n+1}+C_{2n+1}^1+...+C_{2n+1}^{2n}+C_{2n+1}^{2n+1}\)

\(\Leftrightarrow2^{2n+1}=2+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n}\)

\(\Leftrightarrow2^{2n+1}-2=C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n}\)

\(\Leftrightarrow2^{10}-1=2^{2n+1}-2\Rightarrow2^{2n+1}=2^{10}+1\)

Không tồn tại n thỏa mãn yêu cầu bài toán (bạn xem lại đề bài)

NV
16 tháng 9 2020

Xét khai triển:

\(\left(x-1\right)^{2n}=C_{2n}^0-C_{2n}^1x+C_{2n}^2x^2-C_{2n}^3x^3+...-C_{2n}^{2n-1}x^{2n-1}+C_{2n}^{2n}x^{2n}\)

Thay \(x=1\) ta được:

\(0=C_{2n}^0-C_{2n}^1+C_{2n}^2-C_{2n}^3+..-C_{2n}^{2n-1}+C_{2n}^{2n}\)

\(\Leftrightarrow C_{2n}^0+C_{2n}^2+...+C_{2n}^{2n}=C_{2n}^1+C_{2n}^3+...+C_{2n}^{2n-1}\)