Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}+\frac{1}{100\cdot101}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
\(=1+1-\frac{1}{101}=2-\frac{1}{101}=1\frac{100}{101}=\frac{201}{101}\)
=1+1/1-1/2+1/2-1/3+1/3-1/+1/4-1/5+...+1/99-1/100+1/100-1/101
=1+1-1/101
=201/101
\(\frac{2021}{1\cdot2}+\frac{2021}{2\cdot3}+...+\frac{2021}{9\cdot10}=2021\cdot\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\right)\)
\(=2021\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)=2021\cdot\left(1-\frac{1}{10}\right)\)
\(=2021\cdot\frac{9}{10}=\frac{18189}{10}\)
Ta có : \(\frac{2021}{1.2}+\frac{2021}{2.3}+\frac{2021}{3.4}+...+\frac{2021}{9.10}=2021\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(=2021\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2021\left(1-\frac{1}{10}\right)=2021.\frac{9}{10}=1818,9\)
1/2!+1/3!+...+1/100!<1/1*2+1/2*3+1/3*4+...+1/99*100
1-1/100<1