K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 nha 

k cho mình

hok tốt 

12 tháng 12 2021

2

Bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

4 tháng 7 2019

lim x → 0 1 x 1 x + 1 − 1 = lim x → 0 1 x . − x x + 1 = lim x → 0 − 1 x + 1 = − 1.

Chọn đáp án A

14 tháng 12 2021

Chọn đáp án A

12 tháng 6 2019

Chọn B

NV
22 tháng 12 2022

a.

Chọn 1 nam từ 9 nam có 9 cách

Chọn 1 nữ từ 3 nữ có 3 cách

\(\Rightarrow\) Có \(9.3=27\) cách chọn nhóm 1 nam 1 nữ

b.

Chọn 2 nhà toán học từ 8 nahf toán học: \(C_8^2\) cách

Chọn 2 nhà vật lý từ 4 nhà vật lý: \(C_4^2\) cách

\(\Rightarrow C_8^2.C_4^2\) cách lập

c.

Các trường hợp thỏa mãn: (1 nhà toán học nữ, 2 nhà vật lý nam), (1 nhà toán học nữ, 1 nhà toán học nam, 1 nhà vật lý nam), (2 nhà toán học nữ, 1 nhà vật lý nam)

\(\Rightarrow C_3^1.C_4^2+C_3^1.C_5^1.C_4^1+C_3^2.C_4^1\) cách

30 tháng 8 2023

a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:

u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15

Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.

b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:

n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10

Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.

a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):

u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5

Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.

b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:

(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1

Vậy số hạng thứ mấy có giá trị 137137 là u1.

27 tháng 9 2019

Chọn B

4 tháng 11 2018

Đáp án là B

u 1 = 5 , u 2 = 6 , u 3 = 8 , u 4 = 11 , u 5 = 16 , u 6 = 20

Vậy số là 20 số hạng thứ 6

2 tháng 10 2017

Đáp án D

10 tháng 4 2019

Đáp án C

24 tháng 4 2019

Chọn C.

- Ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

16 tháng 11 2019

Chọn D

Ta có :

u n = 19683 ⇔ 3 n 2 + 1 = 3 9 ⇔ n 2 + 1 = 9 ⇔ n = 16  

Vậy số 19683 là số hạng thứ 16 của cấp số.