K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 9 2020

Đặt \(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}\)

\(A=1+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{2500}}\)

\(A< 1+\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{2499}+\sqrt{2500}}\)

\(A< 1+2\left(\sqrt{2}-\sqrt{1}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+...+2\left(\sqrt{2500}-\sqrt{2499}\right)\)

\(A< 1+2\left(\sqrt{2500}-1\right)=99< 100\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Lời giải:

Đặt \(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{2500}}\)

\(\frac{A}{2}=\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2500}}\)

\(\frac{A}{2}< \frac{1}{2}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{2499}+\sqrt{2500}}\)

\(\frac{A}{2}< \frac{1}{2}+\frac{\sqrt{2}-1}{(\sqrt{1}+\sqrt{2})(\sqrt{2}-\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{2500}-\sqrt{2499}}{(\sqrt{2499}+\sqrt{2500})(\sqrt{2500}-\sqrt{2499})}\)

\(\frac{A}{2}< \frac{1}{2}+(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+...+(\sqrt{2500}-\sqrt{2499})\)

\(\frac{A}{2}< \frac{1}{2}+\sqrt{2500}-\sqrt{1}=49+\frac{1}{2}< 50\)

\(\Rightarrow A< 100\) (đpcm)

P.s: Bạn lưu ý lần sau gõ đề bài bằng công thức toán.

6 tháng 7 2017

Ta có :

\(\hept{\begin{cases}\frac{1}{2\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\\\sqrt{n+1}-\sqrt{n}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\end{cases}}\forall n\in N\)

Suy ra : \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)

Đặt \(M=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2499}}+\frac{1}{\sqrt{2500}}\)

\(\Leftrightarrow\frac{1}{2}M=\frac{1}{2\sqrt{2500}}+\frac{1}{2\sqrt{2499}}+...+\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{2}}+\frac{1}{2}\)

Áp dụng BĐT , ta có :

\(\frac{1}{2}M< \sqrt{2500}-\sqrt{2499}+\sqrt{2499}-\sqrt{2498}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}M< \sqrt{2500}-\sqrt{1}+\frac{1}{2}=50-\frac{1}{2}< 50\)

\(\Rightarrow M< 100\)

27 tháng 8 2018

Mình đã chứng minh \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\left(n\inℕ^∗\right)\) rồi nha!

Áp dụng vào, ta được:   \(\frac{1}{2\sqrt{1}}< \sqrt{1}\)

                                  \(\frac{1}{2\sqrt{2}}< \sqrt{2}-\sqrt{1}\)

                                    \(\frac{1}{2\sqrt{3}}< \sqrt{3}-\sqrt{2}\)

                                           .............................

                                     \(\frac{1}{2\sqrt{2500}}< \sqrt{2500}-\sqrt{2499}\)

\(\Rightarrow1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}\)

\(< 2\left(\sqrt{1}+\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2500}-\sqrt{2499}\right)\)

\(=2.50=100\)

=> ĐPCM

P/s: sai sót xin bỏ qua cho.

26 tháng 6 2017

ai giúp mình với @@

11 tháng 7 2016

Ta có : \(\frac{1}{2\sqrt{n+1}}=\frac{1}{\sqrt{n+1}+\sqrt{n+1}}< \frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right)-n}=\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)

Áp dụng : \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}=2\left(\frac{1}{2\sqrt{1}}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2500}}\right)< 2\left(1+\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2500}-\sqrt{2499}\right)=2\sqrt{2500}=2.50=100\)

Vậy ta có điều phải chứng minh.