K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

Ta có :\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{2010}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2010}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{2009}{2010}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{2009}{2010}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2010}\)

\(\Rightarrow x+1=2010\)

\(\Rightarrow x=2010-1\)

\(\Rightarrow x=2009\)

Vậy x = 2009

21 tháng 7 2019

=> 1-1/2+1/2-1/3+1/3- 1/4 +... +1/x -1/x+1 = 2009/1020

=> 1 - 1/x+1=2009/2010

=> (x+1-1)/x+1=2009/2010

=> x/x+1=2009/2010

=>x=2009

4 tháng 2 2018

Ta có: 1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2/3

=> 1-1/2+1/2-1/3+1/3-1/4+...+1/x-1/x+1=2/3

=>1-1/x+1=2/3

=>1/x+1=1/3

=>3=x+1

=>x=2

4 tháng 2 2018

Ta có\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{3}\)

=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{3}\)

=>\(1-\frac{1}{x+1}=\frac{2}{3}\)

=>\(\frac{1}{x+1}=1-\frac{2}{3}\)

=>\(\frac{1}{x+1}=\frac{1}{3}\)

=>\(x+1=3\)

=>\(x=2\)

18 tháng 7 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=201\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=201\)

\(1-\frac{1}{x+1}=201\)

\(\frac{1}{x+1}=1-201\)

\(\frac{1}{x+1}=-200\)

\(\Rightarrow x+1=-\frac{1}{200}\)

\(x=-\frac{1}{200}-1\)

\(x=-\frac{201}{200}\)

Vậy \(x=-\frac{201}{200}\)

8 tháng 3 2017

Gọi A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{19}{20}\)

\(\Rightarrow\) A = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(\Rightarrow\) A = 1 - \(\dfrac{1}{x+1}\)

\(\Rightarrow\) 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{19}{20}\)

\(\Rightarrow1-\dfrac{19}{20}=\dfrac{1}{x+1}\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{20}\)

\(\Rightarrow\) x + 1 = 20\(\Rightarrow\) x=19

6 tháng 8 2016

1/1.2 +1/2.3 +...+ 1/x(x+1) = 2015/2016

<=> 1-1/2 + 1/2 - 1/3 + ... + 1/x - 1/x+1 = 2015/2016

<=> 1 - 1/x+1 = 2015/2016

<=> 1/x+1 = 1/2016

<=> x + 1 = 2016

<=> x = 2015

6 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2015}{2016}\)

 \(\Leftrightarrow\frac{1}{x+1}=1-\frac{2015}{2016}=\frac{1}{2016}\)

\(\Leftrightarrow x+1=2016\Rightarrow x=2015\)

9 tháng 3 2017

\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\);.....; \(\frac{1}{x.\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)

=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=1-\frac{1}{x+1}=\frac{x}{x+1}\)

=> \(\frac{x}{x+1}=\frac{19}{20}\)=> 20x=19x+19 => x=19

ĐS: x=19

9 tháng 3 2017

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x\times\left(x+1\right)}=\frac{19}{20}\)\(\frac{19}{20}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{20}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{19}{20}\)

\(\Rightarrow\frac{x}{x+1}=\frac{19}{20}\)

\(\Rightarrow20x=19x+19\)\(\Rightarrow x=19\)

Vậy \(x=19\)

=>1-1/2+1/2-1/3+...+1/x-1/(x+1)=2022/2021

=>1-1/(x+1)=2022/2021

=>1/(x+1)=-1/2021=1/-2021

=>x+1=-2021

=>x=-2022

20 tháng 6

khó vậy

 

Ta có: \(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}\right)\cdot x=\dfrac{23}{45}\)

\(\Leftrightarrow x\left(1-\dfrac{1}{9}\right)=\dfrac{23}{45}\)

\(\Leftrightarrow x=\dfrac{23}{45}\cdot\dfrac{9}{8}=\dfrac{23}{40}\)