K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{1}-\frac{1}{10}\)

\(=\frac{9}{10}\)

13 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)

Ta có: \(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Leftrightarrow100\left(\dfrac{1}{1}-\dfrac{1}{10}\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]\cdot2=89\)

\(\Leftrightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow x+\dfrac{103}{50}=5\)

hay \(x=\dfrac{147}{50}\)

22 tháng 6 2018

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(A=1-\frac{1}{10}=\frac{9}{10}\)

\(\Rightarrow\frac{9}{10}.100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)

\(\Leftrightarrow90-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)

\(\Rightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}=90-89=1\)

\(\Leftrightarrow x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}:1=5\)

\(\Rightarrow x=5-\frac{206}{100}=\frac{147}{50}\)

Vậy \(x=\frac{147}{50}.\)

21 tháng 7 2023

\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left(100-10\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)

\(\Rightarrow\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=1.2=2\)

\(\Rightarrow\left(x+\dfrac{206}{100}\right)=\dfrac{5}{2}:2=\dfrac{5}{2}.\dfrac{1}{2}=\dfrac{5}{4}\)

\(\Rightarrow x=\dfrac{5}{4}-\dfrac{206}{100}=\dfrac{125}{100}-\dfrac{206}{100}\)

\(\Rightarrow x=-\dfrac{81}{100}\)

15 tháng 8 2016

ta có 2/1.2+2/2.3+2/3.4+...+2/8.9+2/9.10

=2/1-2/2+2/2-2/3+2/3-2/4+...+2/8-2/9+2/9-2/10

=2/1-2/10

=9/5

15 tháng 8 2016

Đặt A = \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}+\frac{2}{9.10}\)

\(A\times2=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)

\(A\times2=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(A\times2=\frac{1}{1}-\frac{1}{10}\)

\(A=\frac{9}{10}\times\frac{1}{2}=\frac{9}{20}\)

7 tháng 8 2017

A = \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{9.10}\)

A = \(\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{3}+\frac{3}{3}-\frac{3}{4}+...+\frac{3}{9}-\frac{3}{10}\)

A = \(\frac{3}{1}-\frac{3}{10}\)

A = \(\frac{27}{10}\)

Vậy A = \(\frac{27}{10}\)

7 tháng 8 2017

\(\frac{3}{1\cdot2}+\frac{3}{2\cdot3}+\frac{3}{3\cdot4}+...+\frac{3}{9\cdot10}\)

\(=3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{10}\right)\)

\(=3\frac{9}{10}=\frac{27}{10}\)

9 tháng 7 2015

\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2003\times2004}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}=1-\frac{1}{2004}=\frac{2003}{2004}\)

9 tháng 7 2015

1/1.2+1/2.3+1/4.4+...1/2003.2004

=1-1/2004

=2003/2004

25 tháng 7 2015

CHO TOG TRÊN LÀ A

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{110.111}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{110}-\frac{1}{111}\)

\(=1-\frac{1}{111}\)

\(=\frac{110}{111}\)

17 tháng 9 2018

Áp dụng \(\frac{1}{a.\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)

Ta có \(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{100.101}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

17 tháng 9 2018

1/1.2+1/2.3+1/3.4+.....+1/100/101

=1-1/2+1/2-1/3+1/3-1/4+.....+1/100-1/101

=1-1/101

=100/101