K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(E=-\dfrac{1}{3}\cdot\left(1+2+3\right)-\dfrac{1}{4}\left(1+2+3+4\right)-...-\dfrac{1}{50}\left(1+2+3+...+50\right)\)

\(=\dfrac{-1}{3}\cdot\dfrac{3\cdot4}{2}-\dfrac{1}{4}\cdot\dfrac{4\cdot5}{2}-...-\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)

\(=\dfrac{-4}{2}-\dfrac{5}{2}-...-\dfrac{51}{2}\)

\(=\dfrac{-\left(4+5+...+51\right)}{2}\)

\(=\dfrac{-\left(51+4\right)\cdot\dfrac{48}{2}}{2}=-\dfrac{1320}{2}=-660\)

9 tháng 10 2016

mình chỉ biết câu b thôi:
 

Ta biến đổi vế phải :

1-1/2+1/3-1/4+.....+1/49-1/50

=(1+1/3+1/5+....+1/49)-(1/2+1/4+1/6+.......+1/50)

=(1+1/2+1/3+.....+1/49+1/50)-2(1/2+1/4+1/6+......+1/50)

=(1+1/2+...+1/50)-(1+1/2+1/3+....+1/25)

=1/26+1/27+.......+1/50

Vậy 1/26+1/27+1/28+.....+1/50=1-1/2+1/3-1/4+......+1/49-1/50

6 tháng 5 2016

Vì 1/2 x 2 hay 1/3 x 3 đều bằng 1 nên ta có cách tính như sau :

Số các số hạng của dãy là :

               (50 - 1) : (2 - 1) + 1 =50 (số)

A là :

                 1 x 50 = 50

                            Đáp số: A = 50