Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a,câu d mk làm rồi nhé
b, Ta có : \(\frac{x}{5}=\frac{y}{3}\)=> \(\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
=> \(\hept{\begin{cases}\frac{x^2}{25}=\frac{1}{4}\\\frac{y^2}{9}=\frac{1}{4}\end{cases}}\)=> \(\hept{\begin{cases}x^2=\frac{25}{4}\\y^2=\frac{9}{4}\end{cases}}\)=> \(\hept{\begin{cases}x=\pm\frac{5}{2}\\y=\pm\frac{3}{2}\end{cases}}\)
c, Đặt : \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)
=> x.y = 2k.3k = 6k2
=> 6k2 = 54
=> k2 = 9
=> k = \(\pm3\)
Như vậy ta tìm được x = 6 , y = 9 hay x = -6 , y = -9
a) Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow x=15.2=30;\)
\(y=20.2=40;\)
\(z=28.2=56\)
Vậy x = 30; y = 40 ; z = 56
b) Đặt \(\frac{x}{5}=\frac{y}{3}=k\)
\(\Rightarrow x=5k;y=3k\)
Khi đó \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Rightarrow5^2.k^2-3^2.k^2=4\)
\(\Rightarrow25.k^2-9.k^2=4\)
\(\Rightarrow k^2.\left(25-9\right)=4\)
\(\Rightarrow k^2.16=4\)
\(\Rightarrow k^2.4^2=2^2\)
\(\Rightarrow k^2=\left(\frac{1}{2}\right)^2\)
\(\Rightarrow k=\pm\frac{1}{2}\)
Nếu \(k=\frac{1}{2}\Rightarrow x=5.\frac{1}{2}=\frac{5}{2};y=3.\frac{1}{2}=\frac{3}{2}\)
Nếu \(k=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}.5=-\frac{5}{2};y=-\frac{1}{2}.3=-\frac{3}{2}\)
Vậy các cặp (x;y) thỏa mãn là : \(\left(\frac{5}{2};\frac{3}{2}\right);\left(-\frac{5}{2};-\frac{3}{2}\right)\)
c) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow x=2k;y=3k\)
Khi đó xy = 54
<=> 2k.3k = 54
=> 6.k2 = 54
=> k2 = 9
=> k2 = 32
=> \(k=\pm3\)
Nếu k = 3 => x = 2.3 = 6 ; y = 3.3 = 9
Nếu k = - 3 => x = 2.(-3) = 6 ; y 3.(-3) = 9
Vậy các cặp số (x;y) thỏa mãn là : (6;9) ; (-6;-9)
a) \(\Rightarrow\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Ánh dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)
\(\Rightarrow\) x = 1 . 18 = 18
y = 1 . 16 = 16
z = 1 . 15 = 15
b)
Từ 4x = 3y ; 7y=5z => \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\) x = 2 . 15 = 30
y = 2 . 20 = 40
z = 2 . 28 = 56
c) từ 10x=6y \(\Rightarrow\) \(\frac{x}{6}=\frac{y}{10}\) \(\left(\frac{x}{6}\right)^2\)=\(\left(\frac{y}{10}\right)^2\) \(\Rightarrow\frac{x^2}{36}\)=\(\frac{y^2}{100}\) \(\Rightarrow\frac{2x^2}{72}=\frac{y^2}{100}\)
áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{2x^2-y^2}{72-100}\) = \(\frac{-28}{-28}\) = 1
\(\Rightarrow\frac{x}{6}=1\) ; \(\frac{y}{10}=1\)
\(\Rightarrow x=6;y=10\)
hoặc \(\Rightarrow\frac{x}{6}=-1;\frac{y}{10}=-1\)
\(\Rightarrow x=-6;y=-10\)
Chúc bạn học tốt
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)
= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5
Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11
\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17
\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23
Vậy x = 11 ; y = 17 ; z = 23
a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)
Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x^2=1;y^2=4;z^2=9\)
=> x = 1 hoặc -1
y = 2 hoặc -2
z = 3 hoặc -3
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
bn dào khánh linh có vẻ jioi, mk làm 1 câu rùi bn lam tip, nếu k lam dc nt cho mk
a) x/6 = y/10
bn bình phuong tlt trên va nhân 2 ty số đầu mhe:
x/6 = x2/36 = 2x2/72
y/10 = y2/100
đến đây thì dễ rùi, nếu hiu dc thi cám ơn mk đi vi mk dăt tay bn
cung nhau di tren con dg tuoi sang
a)10x=6y=>\(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{2x^2-y^2}{18-25}=\frac{-28}{-7}=4\)
b) \(\frac{x^3}{8}=\frac{x}{2}\)
\(\frac{y^3}{64}=\frac{y}{4}\)
\(\frac{z^3}{216}=\frac{z}{6}\)
=>........ áp dụng t.chất dãy tỉ số = nhau
c)
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
=>\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
=>6x=12( cùng tử)
=>x=2
bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x+3y-z-2-6+3}{4+9-4}=\frac{50-5}{9}=5\)
\(\Rightarrow\hept{\begin{cases}x=5.2+1=11\\y=5.3+2=17\\z=5.4+3=23\end{cases}}\)
Vậy...
Ta có: \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}2x−1=3y−2=4z−3
\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}⇒42x−2=93y−6=4z−3
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x+3y-z-2-6+3}{4+9-4}=\frac{50-5}{9}=542x−2=93y−6=4z−3=4+9−42x+3y−z−2−6+3=950−5=5
\(\Rightarrow\hept{\begin{cases}x=5.2+1=11\\y=5.3+2=17\\z=5.4+3=23\end{cases}}\)
\(10x=6y\)=> \(\frac{10x}{30}=\frac{6y}{30}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{x^2}{9}=\frac{y^2}{25}\)=> \(\frac{2x^2}{18}=\frac{y^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x^2}{18}=\frac{y^2}{25}=\frac{2x^2-y^2}{18-25}=\frac{-28}{-7}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{25}=4\end{cases}}\)=> \(\hept{\begin{cases}x=\pm6\\y=\pm10\end{cases}}\)
Ta có : \(2x=3y=5z\)=> \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=150\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=150\\\frac{y}{\frac{1}{3}}=150\\\frac{z}{\frac{1}{5}}=150\end{cases}}\)=> \(\hept{\begin{cases}x=75\\y=50\\z=30\end{cases}}\)
Còn câu c thiếu dấu bằng và làm áp dụng tính chất tương tự