Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, AAA
=Ax100+Ax10+A
=Ax(100+10+1)
=Ax111
Vì 111 chia hết cho 37
=> Ax111 chia hết cho 37
hay AAA chia hết cho 37
2,AB-BA
=(AX10+B)-(BX10+A)
=AX10+B-BX10-A
=(AX10-A)+(B-BX10)
=AX(10-1)+BX(1-10)
=AX9+BX(-9)
=AX9+(-B)X9
=9X[A+(-B)]
Vì 9 chia hết cho 9=>9x[A+(-B)] chia hết cho 9
hay AB-BA chia hết cho 9
Nhớ tick cho mik nha
a,19^2005+ 11^2004 =19^4.501.19
=x1.x9
=x9
11^2004=11^4.501
=x1
x1+x9= y0
suy ra điều cần phải chứng minh
tương tự 2 câu còn lại
chư số cuối của 122012 và 22016 đều là 2 mà 2-2=0
chư số cuối của 19215 và 111000 dều là 1 mà 1-1=0
tất cả các số cá tận cùng là 0 thì chia hết cho 10
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
Tổng các chữ số của \(10^{2016}+11\)là 3
=> (10^2016)+11 chia hết cho 3 nhưng ko chia hết cho 9