Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2x-m+2=0\)
\(\Delta'=1-\left(-m+2\right)=m+3\)
Để (P) cắt (d) tại 2 điểm pb khi m > -3
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m+2\end{matrix}\right.\)
Ta có \(\left(x_1-x_2\right)^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)
Thay vào ta được \(4+4\left(m-2\right)=4\Leftrightarrow4m-4=4\Leftrightarrow m=2\)(tm)
\(\left\{{}\begin{matrix}\dfrac{9}{x+1}-6y=-3\\\dfrac{10}{x+1}+6y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{19}{x+1}=-19\\y=\dfrac{\dfrac{3}{x+1}+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
a) x^2 - 3x + 2 = 0
\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=1\)
=> pt có 2 nghiệm pb
\(x_1=\frac{-\left(-3\right)+1}{2}=2\)
\(x_2=\frac{-\left(-3\right)-1}{2}=1\)
a) Dễ thấy phương trình có a + b + c = 0
nên pt đã cho có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 2
b) \(\hept{\begin{cases}x+3y=3\left(I\right)\\4x-3y=-18\left(II\right)\end{cases}}\)
Lấy (I) + (II) theo vế => 5x = -15 <=> x = -3
Thay x = -3 vào (I) => -3 + 3y = 3 => y = 2
Vậy pt có nghiệm ( x ; y ) = ( -3 ; 2 )
ĐKXĐ : \(y>-5\)
Đặt \(\left(x-2\right)^2=a>0\) và \(\frac{1}{\sqrt{y+5}=b}\)
Hệ phương trình đã cho trở thành : \(\hept{\begin{cases}2a+b=3\\a-2b=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}4a+2b=6\\a-2b=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5a=5\\a-2b=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=1\end{cases}}\)( Thỏa mãn )
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2=1\\\frac{1}{\sqrt{y+5}=1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\\\sqrt{y+5}=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2=1\\\frac{1}{\sqrt{y+5}=1}\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{y+5}=1\\\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\end{cases}\Leftrightarrow}\hept{\begin{cases}y+5=1\\\orbr{\begin{cases}x=3\\x=1\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=3\\y=-4\end{cases}}\\\hept{\begin{cases}x=1\\y=-4\end{cases}}\end{cases}}}\)
ĐKXĐ : y > -5
Đặt \(\hept{\begin{cases}\left(x-2\right)^2=a\\\frac{1}{\sqrt{y+5}}=b\end{cases}\left(a\ge0;b>0\right)}\)
Hpt đã cho trở thành \(\hept{\begin{cases}2a+b=3\\a-2b=-1\end{cases}}\)=> \(a=b=1\left(tm\right)\)
=> \(\hept{\begin{cases}\left(x-2\right)^2=1\\\frac{1}{\sqrt{y+5}}=1\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=-4\end{cases}}or\hept{\begin{cases}x=1\\y=-4\end{cases}}\)(tm)
Vậy ...
Từ 2x - y - 2 = 0
ta được y = 2x - 2
Thế vào phương trình dưới ta được
3x2 - x(2x - 2) - 8 = 0
<=> x2 + 2x - 8 = 0
<=> (x - 2)(x + 4) = 0
<=> \(\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Với x = 2 được y = 2
Với x = -4 được y = - 10
Vậy (x;y) = (2;2) ; (-4 ; -10)
a, \(x^2-3x-4=0\)Ta có a - b + c = 1 + 4 - 4 = 0
Vậy pt có 2 nghiệm x = -1 ; x = 4
b, \(\left\{{}\begin{matrix}6x-3y=15\\5x+3y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=33\\y=2x-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
a: =>xy-2x+2y-4=xy+y và 5xy+10x+y+2=5xy-10x-2y+4
=>-2x+y=4 và 20x+3y=2
=>x=-5/13; y=42/13
b: =>4x+2|y|=8 và 4x-3y=1
=>2|y|-3y=7 và 4x-3y=1
TH1: y>=0
=>2y-3y=7 và 4x-3y=1
=>-y=7 và 4x-3y=1
=>y=-7(loại)
TH2: y<0
=>-2y-3y=7 và 4x-3y=1
=>y=-7/5; 4x=1+3y=1-21/5=-16/5
=>x=-4/5; y=-7/5
Bài 2:
a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)
\(=5m^2-2m+9>0\forall m\)
Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m
Bài 1:
ĐKXĐ \(2x\ne y\)
Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)
HPT trở thành
\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)
`{(x+3y=x(5y-1)),(1/x-3/y=-2):}` `ĐK: x; y ne 0`
`<=>{(x+3y=5xy-x),(-3x+y=-2xy):}`
`<=>{(5xy-2x=3y),(-3x+y=-2xy):}`
`<=>{(x(5y-2)=3y),(-3x+y=-2xy):}`
`<=>{(x=[3y]/[5y-2]),(-3x+y=-2xy):}` `ĐK: y ne 2/5` (TH `y=2/5` ko t/m)
`<=>{(x=[3y]/[5y-2]),(-3[3y]/[5y-2]+y=-2[3y]/[5y-2]y):}`
`<=>{(x=[3y]/[5y-2]),(-9y+5y^2-2y=-6y^2):}`
`<=>{(x=[3y]/[5y-2]),(11y^2-11y=0):}`
`<=>{(x=[3y]/[5y-2]),([(y=0(ko t//m)),(y=1(t//m)):}):}`
`<=>{(x=[3. 1]/[5.1-2]=1),(y=1):}` (t/m)
Xét hpt \(\left\{{}\begin{matrix}\dfrac{x}{y}+2.\dfrac{y}{x}=3\left(1\right)\\2x^2-3y=-1\left(2\right)\end{matrix}\right.\) (đkxđ: \(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\))
Từ (1) \(\Leftrightarrow\dfrac{x^2+2y^2}{xy}=3\Rightarrow x^2+2y^2=3xy\Leftrightarrow x^2-3xy+2y^2=0\)\(\Leftrightarrow x^2-xy-2xy+2y^2=0\Leftrightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x-2y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y\\x=2y\end{matrix}\right.\)
Xét trường hợp \(x=y\), thay vào (2), ta có \(2x^2-3x=-1\Leftrightarrow2x^2-3x+1=0\) (3)
pt (3) có tổng các hệ số bằng 0 nên pt này có 2 nghiệm \(\left[{}\begin{matrix}x_1=1\\x_2=\dfrac{1}{2}\end{matrix}\right.\)(nhận)
Nếu \(x=1\Rightarrow y=1\) (vì \(x=y\)) (nhận)
Nếu \(x=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}\) (nhận)
Vậy ta tìm được 2 nghiệm của hpt đã cho là \(\left(1;1\right)\) và \(\left(\dfrac{1}{2};\dfrac{1}{2}\right)\)
Xét trường hợp \(x=2y\), thay vào (2), ta có \(2.\left(2y\right)^2-3y=-1\Leftrightarrow8y^2-3y+1=0\) (4)
pt (4) có \(\Delta=\left(-3\right)^2-4.8.1=-23< 0\) nên pt này vô nghiệm.
Vậy hpt đã cho có tập nghiệm \(S=\left\{\left(1;1\right);\left(\dfrac{1}{2};\dfrac{1}{2}\right)\right\}\)