Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GT: ΔABC; ^C=32
AH\(\perp\)BC (H\(\in\)BC) ; ^HAD=^CAD(D\(\in\)BC)
KL: ^ADH=?
Bài Làm
Xét ΔAHC vuông tại H(gt)
=> ^HAC+^C=90
=>^HAC=90-^C=90 - 32 =58
Vì AD là tia pg của ^HAC
=> A1=A2=1/2 ^HAC =1/2 .58 =29
Xét ΔAHD vuông tại H(gt)
=> A1+^ADH=90
=>^ADH=90 - ^A1 =90-29=61
em cảm ơn nha, nãy e vào trang cá nhân chj, em thấy 12 p tưởng chj off nên k hỏi^^
\(\text{a) Ta có:}\)
∠BFC = 90o (góc nội tiếp chắn nửa đường tròn)=> ∠AFC = 90o
∠BEC = 90o (góc nội tiếp chắn nửa đường tròn)=> ∠AEC = 90o
Tứ giác AEHF có:
∠AFC = 90o
∠AEC = 90o
=>∠AFC + ∠AEC = 180o
=> AEHF là tứ giác nội tiếp
b) ∠AFH = 90o => AH là đường kính đường tròn ngoại tiếp tứ giác AEHF
\(\text{Do đó trung điểm I của AH là tâm đường tròn ngoại tiếp tứ giác AEHF}\)
=> Bán kính đường tròn ngoại tiếp tứ giác AEHF là R = AI = \(\frac{AH}{2}\) = 2cm
Ta có: ∠BAC = 60o
=> ∠FIE = 2∠BAC = 120o (Góc nội tiếp bằng \(\frac{1}{2}\) góc ở tâm cùng chắn một cung)
=> Số đo ∠EHF = 120o
Diện tích hình quạt IEHF là:
\(S=\frac{\pi R^2N}{360}=\frac{\pi.2^2.120}{360}=\frac{4\pi}{3}\left(ĐVDT\right)\)
\(\text{c) Xét tam giác ABC có: }\)
BE và CF là các đường cao
BE giao với CF tại H
=> H là trực tâm tam giác ABC
=>AH ⊥ BC hay ∠ADC = ∠ADB = 90o
Xét tứ giác BEFC có:
∠BFC = ∠BEC = 90o
=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc bằng nhau
=> BEFC là tứ giác nội tiếp
=> ∠HFE = ∠BEC ( 2 góc nội tiếp cùng chắn cung EC) (1)
Xét tứ giác BFHD có:
∠BFH = ∠HDB = 90o
=>∠BFH + ∠HDB = 180o
=> Tứ giác BFHD là tứ giác nội tiếp ( tổng 2 góc đối bằng 180o)
=> ∠DFH = ∠BEC ( 2 góc nội tiếp cùng chắn cung HD) (2)
Từ (1) và (2) = > ∠HFE = ∠DFH
=> FH tia phân giác của góc ∠DFE
d) Tam giác OFB cân tại O => ∠OFB = ∠FBO
Tam giác BFC vuông tại F => ∠FBO + ∠HCD = 90o
=> ∠OFB + ∠HCD = 90o (*)
\(\hept{\begin{cases}\Delta FIH\text{CÂN TẠI I}\\\widehat{IHF}=\widehat{DHC}\left(\text{ĐỐI ĐỈNH}\right)\\\Delta HDC\text{VUÔNG TẠI D}\Rightarrow\widehat{DHC}+\widehat{HDC}=90^0\end{cases}}\Rightarrow\widehat{IFH}+\widehat{HDC}=90^0\)
Từ (*) và (**) => ∠OFB = ∠IFH
=> ∠OFB + ∠OFH = ∠IFH + ∠OFH <=> ∠BFC = ∠FIO <=> ∠FIO) = 90o
Vậy FI là tiếp tuyến của (O)
Chứng minh tương tự EI là tiếp tuyến của (O)
Mà I là trung điểm của AH
=> Tiếp tuyến của (O) tại E và F và AH đồng quy tại 1 điểm.
HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP CỦA MIK NHA
VCN JACK trả lời cuc64 kì đ luôn . đ là chất
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}4x-y+3=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{5}{7};\dfrac{1}{7}\right)\)
Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}4x-y+3=0\\x+y+3=0\end{matrix}\right.\) \(\Rightarrow C\left(-\dfrac{6}{5};-\dfrac{9}{5}\right)\)
Phương trình đường thẳng qua C và vuông góc phân giác góc B:
\(2\left(x+\dfrac{6}{5}\right)+1\left(y+\dfrac{9}{5}\right)=0\Leftrightarrow2x+y+\dfrac{21}{5}=0\)
Gọi E là hình chiếu của C lên phân giác góc B \(\Rightarrow\left\{{}\begin{matrix}2x+y+\dfrac{21}{5}=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow E\left(-\dfrac{47}{25};-\dfrac{11}{25}\right)\)
Gọi F là điểm đối xứng E qua phân giác góc B \(\Rightarrow\) F thuộc AB đồng thời E là trung điểm CF \(\Rightarrow F\left(-\dfrac{64}{25};\dfrac{23}{25}\right)\)
\(\Rightarrow\overrightarrow{BF}\Rightarrow\) pt BF (chính là phương trình AB)
Làm tương tự với AC
Chúc bn hok tốt!!!