K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2023

Khoảng cách tử ảnh đến thấu kính:

Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Leftrightarrow d'=\dfrac{d.f}{d-f}=\dfrac{3.2}{3-2}=6\left(cm\right)\)

Chiều cao của ảnh:
Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{6.2}{3}=4\left(cm\right)\)

2 tháng 5 2021

2 tháng 5 2021

a,vì d>f(3cm>2cm) nên vật cho ảnh thật ngược chiều và lớn hơn vật

b,ta có 1/f=1/d+1/d'<=>1/2=1/3+1/d'<=>d'=6cm(f là tiêu cự,d và d' lần lượt là khoảng cách từ vật và ảnh tới thấu kính)=> khoảng cách từ ảnh tới thấu kính tới thấu kính là 6cm

đổi 1m=100cm ta có h/h'=d/d'<=>100/h'=3/6<=>h'=200cm(h và h' lần lượt là chiều cao của vật AB và chiều cao của ảnh A'B')

Vậy độ lớn của ảnh là 200cm

 

16 tháng 3 2022

undefined

Ảnh thật, ngược chiều và lớn hơn vật.

Khoảng cách từ ảnh đến thấu kính:

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{10}=\dfrac{1}{15}+\dfrac{1}{d'}\Rightarrow d'=30cm\)

Chiều cao ảnh:

\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{15}{30}\Rightarrow h'=4cm\)

21 tháng 3 2021

undefined

Đặc điểm:

- Ảnh thật

- Ảnh lớn hơn vật và ngược chiều với vật

Tóm tắt:

AB = h = 2cm

OF = OF' = f = 8cm

AO = d = 12cm

A'B' = h = ?

A'O = d' = ?

Giải:

\(\Delta ABF\sim\Delta OIF\)\(\Rightarrow\dfrac{AB}{OI}=\dfrac{AF}{OF}\Leftrightarrow\dfrac{AB}{A'B'}=\dfrac{AO-OF}{OF}\Leftrightarrow\dfrac{2}{A'B'}=\dfrac{12-8}{8}\)

\(A'B'=\dfrac{2.8}{12-8}=4cm\)

\(\Delta ABO\sim\Delta A'B'O\)

\(\Rightarrow\dfrac{AB}{A'B'}=\dfrac{AO}{A'O}\Leftrightarrow\dfrac{2}{4}=\dfrac{12}{A'O}\Rightarrow A'O=\dfrac{12.4}{2}=24cm\)

21 tháng 3 2021

undefined

Đặc điểm:

- Ảnh ảo

- Ảnh lớn hơn vật và cùng chiều với vật

Tóm tắt:

AB = h = 2cm

OF = OF' = f = 8cm

AO = d = 6cm

A'B' = ?

A'O = ?

Giải:

\(\Delta OFI\sim\Delta AFB\)

\(\Rightarrow\dfrac{OF}{AF}=\dfrac{OI}{AB}\Leftrightarrow\dfrac{OF}{OF-OA}=\dfrac{A'B'}{AB}\Leftrightarrow\dfrac{8}{8-6}=\dfrac{A'B'}{2}\)

\(\Rightarrow A'B'=\dfrac{8.2}{8-6}=8cm\)

\(\Delta A'B'O\sim\Delta ABO\)

\(\Rightarrow\dfrac{A'B'}{AB}=\dfrac{A'O}{AO}\Leftrightarrow\dfrac{8}{2}=\dfrac{A'O}{6}\Rightarrow A'O=\dfrac{8.6}{2}=24cm\)