Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài của khu vườn là x và chiều rộng là y (x;y>0)
Do chu vi khu vườn là 450m nên: \(2\left(x+y\right)=450\Rightarrow x+y=225\)
Chiều dài khu vườn sau khi giảm: \(x-\dfrac{1}{5}x=\dfrac{4}{5}x\)
Chiều rộng sau khi tăng: \(y+\dfrac{1}{4}y=\dfrac{5}{4}y\)
Do chu vi không đổi nên: \(\dfrac{4}{5}x+\dfrac{5}{4}y=225\)
Ta có hệ: \(\left\{{}\begin{matrix}x+y=225\\\dfrac{4}{5}x+\dfrac{5}{4}y=225\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=125\\y=100\end{matrix}\right.\)
: Gọi x là số dòng / trang ; Gọi y là số chữ / dòng
Ta có : (x-5)(y-2) = xy - 150 => xy - 2x - 5y + 10 = xy -150 => 2x + 5y = 160 (1)
Ta có : (x+6)(y+3) = xy + 228 => xy + 3x + 6y + 18 = xy + 228 => 3x + 6y = 210 (2)
Từ (1) và (2) => x= 30 ; y = 20
Vậy : số dòng trong trang sách là 30 dòng và số chữ trong mỗi dòng là 20 chữ
Gọi số dòng là x, số chữ trong 1 dòng là y
Nếu bớt đi 5 dòng và mỗi dòng bớt đi 2 chữ thì cả trang sách sẽ bớt đi 150 chữ nên ta có pt: xy-(x-5)(y-2)=150<=>2x+5y=160
Nếu tăng thêm 6 dòng và mỗi dòng tăng thêm 3 chữ thì cả trang sách sẽ tăng 228 chữ nên ta có pt: (x+6)(y+3)=xy+228<=>x+2y=70
Từ đó ta có 1 hpt rồi giải ra
Vậy có 30 dòng, mỗi dòng 20 chữ
Gọi chiều dài, chiều rộng của hình chữ nhật lần lượt là a(cm),b(cm)
(Điều kiện: a>0 và b>0)
Chiều dài của hình chữ nhật sau khi giảm đi 2cm là a-2(cm)
Chiều rộng của hình chữ nhật sau khi tăng thêm 2 cm là b+2(cm)
Nếu giảm chiều dài đi 2cm và tăng chiều rộng thêm 2cm thì diện tích tăng thêm 4cm2 nên ta có:
(a-2)(b+2)=ab+4
=>ab+2a-2b-4=ab+4
=>2a-2b=8
=>a-b=4(1)
Chiều dài của hình chữ nhật sau khi giảm đi 3 lần là:
\(\dfrac{1}{3}a\left(cm\right)\)
Chiều rộng của hình chữ nhật sau khi tăng thêm 2 lần là:
2b(cm)
Khi giảm chiều dài đi 3 lần và tăng chiều rộng thêm 2 lần thì chu vi không đổi nên ta có:
\(\dfrac{1}{3}a+2b=a+b\)
=>\(\dfrac{1}{3}a-a=b-2b\)
=>\(-\dfrac{2}{3}a=-b\)
=>\(b=\dfrac{2}{3}a\)(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=4\\\dfrac{2}{3}a=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\dfrac{2}{3}a-b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{3}a=4\\a-b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=12\\b=a-4=12-4=8\end{matrix}\right.\left(nhận\right)\)
Diện tích hình chữ nhật là:
\(12\cdot8=96\left(cm^2\right)\)
Gọi chiều dài ban đầu của hình chữ nhật là L và chiều rộng ban đầu là W.
Theo đề bài, ta có hệ phương trình sau:
(L - 2)(W + 2) = LW + 4 (1) (diện tích tăng 4cm² khi giảm chiều dài đi 2cm và tăng chiều rộng thêm 2cm)
3L(W x 2) = 2(L + W) (2) (chu vi không đổi khi giảm chiều dài đi ba lần và tăng chiều rộng hai lần)
Giải hệ phương trình (1) và (2):
Mở ngoặc trong phương trình (1):
LW - 2L + 2W - 4 = LW + 4
-2L + 2W - 4 = 4
-2L + 2W = 8 (3)
Phương trình (2) có thể viết lại thành:
6LW = 2L + 2W (4)
Từ phương trình (3), ta có:
-2L = 8 - 2W
L = -4 + W (5)
Thay (5) vào (4):
6(-4 + W)W = 2(-4 + W) + 2W
-24W + 6W^2 = -8 + 2W + 2W
6W^2 - 24W = -8 + 4W
6W^2 - 28W + 8 = 0
Chia cả hai vế cho 2:
3W^2 - 14W + 4 = 0
Giải phương trình trên, ta được hai giá trị của W:
W1 ≈ 0.47 và W2 ≈ 4.53
Thay W1 và W2 vào phương trình (5), ta tính được hai giá trị của L:
L1 ≈ -3.53 và L2 ≈ 4.53
Vì chiều dài và chiều rộng không thể là giá trị âm, nên ta chỉ xét giá trị dương.
Vậy, chiều dài và chiều rộng của hình chữ nhật là L2 ≈ 4.53 và W2 ≈ 4.53.
Diện tích của hình chữ nhật là S = L2 * W2 ≈ 4.53 * 4.53 ≈ 20.52 cm².
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có:
\(\left\{{}\begin{matrix}a+b=225\\\dfrac{4}{5}a+\dfrac{5}{4}b=225\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=125\\b=100\end{matrix}\right.\)
Gọi số chữ mỗi dòng là a(chữ).ĐK: \(a\in N,a\ne0\)
Gọi số dòng là b(dòng). ĐK: \(b\in N,b\ne0\)
Số chữ của trang sách là: (a-2)(b+3) hoặc (a+3)(b-3).
Ta có pt: \(\left(a-2\right)\left(b+3\right)=\left(a+3\right)\left(b-3\right)\)
\(\Leftrightarrow6a-5b+3=0\)
\(\Rightarrow b=\dfrac{6a+3}{5}=\dfrac{3\left(a+2\right)}{5}\)
Vì b \(\in N,b\ne0\) nên a+2 \(⋮5\)
\(\Rightarrow a=5k+3\left(k\in N\right)\)
\(\Rightarrow b=\dfrac{3\left(5k+5\right)}{5}=3\left(k+1\right)\)
Số chữ của trang sách: \(3\left(5k+3\right)\left(k+1\right)=15k^2+24k+9\)(chữ)
2. Gọi a là chiều dài lúc đầu. ĐK: a \(\in\) N*.
Gọi b là chiều rộng lúc đầu. ĐK: \(b\in\)N*.
Chu vi hình chữ nhật: \(\dfrac{4}{5}a+\dfrac{5}{4}b=450\)
Ta có pt: \(a+b=\dfrac{4}{5}a+\dfrac{5}{4}b\)
\(\Rightarrow a=250\left(TM\right);b=200\left(TM\right)\)
Vậy chiều dài là 250 m, chiều rộng là 200 m