Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\frac{1}{5}x^2y\left(15xy^2-5y+3xy\right)=3x^3y^3-x^2y^2+\frac{3}{5}x^3y^2\)
b,\(5x^3-5x=5x\left(x^2-1\right)=5x\left(x-1\right)\left(x+1\right)\)
c, \(3x^2+5y-3xy-5x=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
1) 1/5x2y( 15xy2 - 5y + 3xy ) = 3x3y3 - x2y2 + 3/5x3y2
2) a) 5x3 - 5x = 5x( x2 - 1 ) = 5x( x2 - 12 ) = 5x( x - 1 )( x + 1 )
b) 3x2 + 5y - 3xy - 5x = ( 3x2 - 3xy ) + ( 5y - 5x )
= 3x( x - y ) + 5( y - x )
= 3x( x - y ) + 5[ -( x - y ) ]
= 3x( x - y ) - 5( x - y )
= ( 3x - 5 )( x - y )
Làm tính nhân
(4x3+3xy2-2y3).(3x2-5xy-6y2)
=12x5+12y5-20x4y-36x2y3-8xy4
Phân tích đa thức thành nhân tử
10x3+5x2y-10x2y-10xy2+5y3
=10x3-5x2y-10xy2+5y3
=5(2x3-x2y-2xy2+y3-)
\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)
\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(\left(3x^2-3xy\right)-\left(5x-5y\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
\(\left(3x^2-3xy\right)-\left(5x-5y\right)\)
=\(3x\left(x-y\right)-5\left(x-y\right) \)
=\(\left(x-y\right)\left(3x-5\right)\)
1) \(\left(5x-4\right)\left(4x-5\right)+\left(5x-1\right)\left(x+4\right)+3\left(3x-2\right)\)
\(=20x^2-41x+20+\left(5x-1\right)\left(x+4\right)+3\left(3x-2\right)\)
\(=20x^2-41+20+5x^2+19x-4+3\left(3x-2\right)\)
\(=20x^2-41x+20+5x^2+19x-4+9x-4\)
\(=25x^2-13x+10\)
2) \(\left(5x-4\right)^2+\left(16-25x^2\right)+\left(5x+4\right)\left(3x+2\right)\)
\(=\left(5x-4\right)^2+16-25x^2+\left(5x-4\right)\left(3x+2\right)\)
\(=25x^2-40x+16^2-25x^2+\left(5x-4\right)\left(3x+2\right)\)
\(=25x^2-40x+16^2-25x^2+15x^2-2x-8\)
\(=15x^2-42x+24\)
\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(3x-5\right)\left(x-y\right)\\ x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\\ 45+x^3-5x^2-9x=x^2\left(x-5\right)-9\left(x-5\right)=\left(x-3\right)\left(x+3\right)\left(x-5\right)\)
\(=\left(3x^2-3xy\right)+\left(5y-5x\right)\)
\(=3x\left(x-y\right)+5\left(y-x\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
Ta có:
\(3x^2+5y-3xy-5x\)
\(=\left(3x^2-3xy\right)+\left(5y-5x\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
\(5x^3-5x=5x\left(x^2-1\right)\)
\(3x^2+5x-3xy-5x=x\left(3x+5\right)-x\left(3y+5\right)=x\left(3x-3y\right)=3x\left(x-y\right)\)
\(\frac{1}{5}x^2y\left(15xy^2-5y+3xy\right)\)
\(=\frac{1}{5}x^2y^2\left(15xy-5+3x\right)\)
\(=\frac{1}{5}\left(x.y\right)^2.\left(15xy-5+3x\right)\)
\(=\frac{1}{5}\left(15x^3y^3-5x^2y^2+3x^3y^2\right)\)