Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\sqrt{\dfrac{25}{16}\cdot\dfrac{49}{9}\cdot\dfrac{1}{100}}=\dfrac{5}{4}\cdot\dfrac{7}{3}\cdot\dfrac{1}{10}=\dfrac{35}{120}=\dfrac{7}{24}\)
b: \(=\sqrt{1.44\cdot0.81}=1.2\cdot0.9=1.08\)
c: \(=\sqrt{\dfrac{\left(165-124\right)\left(165+124\right)}{164}}=\sqrt{\dfrac{1}{4}\cdot289}=\dfrac{17}{2}\)
d: \(=\sqrt{\dfrac{\left(149-76\right)\left(149+76\right)}{\left(457-384\right)\left(457+384\right)}}=\sqrt{\dfrac{225}{841}}=\dfrac{15}{29}\)
a) \(\sqrt{\frac{196}{169}}=\frac{14}{13}\)
b) \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{8}{5}\)
c) \(\sqrt{\frac{0,36}{25}}=\frac{0,6}{5}=\frac{3}{25}\)
d) \(\sqrt{\frac{6,4}{4,9}}=\sqrt{\frac{64}{49}}=\frac{8}{7}\)
a) \(\sqrt{\frac{196}{169}}=\sqrt{\left(\frac{14}{13}\right)^2}=\frac{14}{13}\)
b) \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\sqrt{\left(\frac{8}{5}\right)^2}=\frac{8}{5}\)
c) \(\sqrt{\frac{0,36}{25}}=\sqrt{\left(\frac{0,6}{5}\right)^2}=\frac{0,6}{5}=\frac{6}{50}=\frac{3}{25}\)
d) \(\sqrt{\frac{6,4}{4,9}}=\sqrt{\frac{64}{49}}=\sqrt{\left(\frac{8}{7}\right)^2}=\frac{8}{7}\)
Bài 1:
a) \(\sqrt{1,44\cdot1,21-1,44\cdot0,4}\)
\(=\sqrt{1,44\cdot\left(1,21-0,4\right)}\)
\(=\sqrt{1,44\cdot0,81}\)
\(=\sqrt{1,44}\cdot\sqrt{0,81}\)
\(=1,2\cdot0,9\)
\(=1,08\)
b) \(\dfrac{\sqrt{5}-2}{\sqrt{5}+2}+\sqrt{80}\)
\(=\dfrac{\left(\sqrt{5}-2\right)^2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+4\sqrt{5}\)
\(=\dfrac{5-4\sqrt{5}+4}{1}+4\sqrt{5}\)
\(=9-4\sqrt{5}+4\sqrt{5}\)
\(=9\)
c) \(\sqrt[3]{16}+\sqrt[3]{2}\left(\sqrt[3]{4}-\sqrt[3]{2}\right)\)
\(=\sqrt[3]{2^3\cdot2}+\sqrt[3]{2\cdot4}-\sqrt[3]{2\cdot2}\)
\(=2\sqrt[3]{2}+\sqrt[3]{8}-\sqrt[3]{4}\)
\(=2\sqrt[3]{2}+2-\sqrt[3]{4}\)
Bài 2: Ta có:
\(VT=\dfrac{1}{\sqrt{a}-\sqrt{b}}:\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}:\dfrac{\sqrt{ab}\cdot\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\cdot\dfrac{1}{\sqrt{a}+\sqrt{b}}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{\left(a-b\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{1}{a-b}=VP\left(dpcm\right)\)
a) \(\sqrt{\frac{25}{81}\cdot\frac{16}{49}\cdot\frac{169}{9}}\\ =\sqrt{\left(\frac{5}{9}\right)^2\cdot\left(\frac{4}{7}\right)^2\cdot\left(\frac{13}{3}\right)^2}\\ =\sqrt{\left(\frac{5}{9}\cdot\frac{4}{7}\cdot\frac{13}{3}\right)^2}\\ =\frac{5}{9}\cdot\frac{4}{7}\cdot\frac{13}{3}\\ =\frac{260}{189}\)
b) \(\sqrt{3\frac{1}{6}\cdot2\frac{14}{25}\cdot2\frac{34}{81}}\\ =\sqrt{\frac{19}{6}\cdot\frac{64}{25}\cdot\frac{196}{81}}\\ =\sqrt{\frac{19}{6}\cdot\left(\frac{8}{5}\right)^2\cdot\left(\frac{14}{9}\right)^2}\\ =\sqrt{\frac{19}{6}\cdot\left(\frac{8}{5}\cdot\frac{14}{9}\right)^2}\\ =\sqrt{\frac{19}{6}\cdot\frac{112}{45}}\\ =\sqrt{\frac{1064}{135}}\)
Bổ sung câu b :
\(\sqrt{3\frac{1}{16}.2\frac{14}{25}.2\frac{34}{81}}=\sqrt{\frac{49}{16}.\frac{64}{25}.\frac{196}{81}}=\sqrt{\frac{49}{16}}.\sqrt{\frac{64}{25}}.\sqrt{\frac{196}{81}}=\frac{7}{4}.\frac{8}{5}.\frac{14}{9}=\frac{196}{45}\)
\(\sqrt{\frac{3,6}{4,9}}=\pm\frac{6}{7}\)
\(\sqrt{1,44\cdot1,21-1,44\cdot0,4}\)
\(=\sqrt{1,44\left(1,21-0,4\right)}\)
\(=\sqrt{1,44\cdot0,81}\)
\(=\sqrt{1,664}\)
\(=\sqrt{1,08}\)
c tự tính đi
a)\(\sqrt{\frac{3,6}{4,9}}=\pm\frac{6}{7}\)
b)\(\sqrt{1,44\cdot1,21-1,44\cdot0,4}=\sqrt{1,44\left(1,21-0,4\right)}\)
\(=\sqrt{1,44\cdot0,81}=1,2\cdot0,9=1,08\)