K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2017

1.

a.

x(y-1)-(y-1)=0

(x-1)(y-1)=0

x=1

y=1

b.x,y khác không

(x+y)/xy=1/2

2x+2y=xy

x(2-y)-2(2-y)=4

(x-2)(y-2)=4

x-2={-4,-2,1,4}=>x={-2,0,3,6}

y-2={-1,-2,4,1}=>y={3,0,6,3}

a: =>5x-2=0 hoặc 2x+1/3=0

=>x=-1/6 hoặc x=2/5

b: Đặt x/2=y/3=k

=>x=2k; y=3k

xy=54

=>6k^2=54

=>k^2=9

=>k=3 hoặc k=-3

TH1: k=3

=>x=6; y=9

TH2: k=-3

=>x=-6; y=-9

c: =>5050x=-213

=>x=-213/5050

27 tháng 2 2021

\(\left(-x^2y\right)^3\cdot\dfrac{1}{2}\cdot x^2y^3\cdot\left(-2xy^2z\right)^2\\ =-x^6y^3\cdot\dfrac{1}{2}x^2y^3\cdot4x^2y^4z^2\\ =\left(-1\cdot\dfrac{1}{2}\cdot4\right)\cdot\left(x^6\cdot x^2\cdot x^2\right)\cdot\left(y^3\cdot y^3\cdot y^4\right)\cdot z^2\\ =-2x^{10}y^{10}z^2\)

27 tháng 2 2021

bạn chụp ảnh sẽ dễ nhìn hơn :D

Bài 2: 

a: =>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

27 tháng 2 2021

\(\left(-x^3.z.y\right).\left(\dfrac{2}{3}.y.x^2\right)^2\)

\(=-x^3.z.y.\dfrac{4}{9}.y^2.x^4\)

\(=-\dfrac{4}{9}x^7.y^3.z\)

27 tháng 2 2021

`(-x^3zy)(2/3yx^2)^2`

`=-4/9x^3zy.y^2x^4`

`=-4/9x^{3+4}.y^{1+2}z`

`=-4/9x^7y^3z`

22 tháng 8 2015

=> \(\frac{x-y}{1}=\frac{x+y}{7}=\frac{xy}{24}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{xy}{24}=\frac{x-y}{1}=\frac{x+y}{7}=\frac{\left(x-y\right)+\left(x+y\right)}{1+7}=\frac{\left(x-y\right)-\left(x+y\right)}{1-7}\)=> \(\frac{xy}{24}=\frac{x}{4}=\frac{y}{3}\)

\(\frac{xy}{24}=\frac{x}{4}\)=>\(\frac{x}{4}.\frac{y}{6}=\frac{x}{4}\)=>  \(\frac{y}{6}=\frac{x}{4}:\frac{x}{4}=1\) ( do x khác 0) => y = 6

\(\frac{xy}{24}=\frac{y}{3}\Rightarrow\frac{x}{8}.\frac{y}{3}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{3}:\frac{y}{3}=1\) ( do y khác 0) => x = 8

Vậy...

5 tháng 1 2022

\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)

\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)

\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)

\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)

\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)

17 tháng 11 2021

a,Ta có:

\(\dfrac{x}{y}=\dfrac{7}{4}=\dfrac{x}{7}=\dfrac{y}{4}\)

ÁP dụng tcdtsbn , ta có:

\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x+y}{7+4}=\dfrac{33}{11}=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=21\\y=12\end{matrix}\right.\)

b,

\(\Rightarrow3.\left(x-1\right)=-24\)

\(\Rightarrow x-1=-8\)

\(\Rightarrow x=-7\)

17 tháng 11 2021

A)\(\dfrac{x}{y}=\dfrac{7}{4}\Rightarrow\dfrac{x}{7}=\dfrac{y}{4}\)

Áp dụng t/c dtsbn ta có:

\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x+y}{7+4}=\dfrac{33}{11}=3\)

\(\dfrac{x}{7}=3\Rightarrow x=21\\ \dfrac{y}{4}=3\Rightarrow y=12\)

B) \(3\left(x-1\right)+5=-19\\ \Rightarrow3\left(x-1\right)=-24\\ \Rightarrow x-1=-8\\ \Rightarrow x=-7\)

28 tháng 9 2021

a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)

Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)

Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)