Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : B = (1-\(\frac{z}{x}\))(1-\(\frac{x}{y}\))(1+\(\frac{y}{z}\))
=> B=\(\frac{x-z}{x}\).\(\frac{y-x}{y}\).\(\frac{z+y}{z}\)
Từ : x-y-z = 0
=>x – z = y; y – x = – z và y + z = x
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)
\(\left\{\begin{matrix}\frac{12x-8y}{16}=0\\\frac{6z-12x}{9}=0\\\frac{8y-6z}{4}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow12x=8y=6z\)
\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)
a.
\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\Rightarrow\frac{5x}{35}=\frac{2y}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
\(\frac{5x}{35}=3\Rightarrow x=\frac{35\times3}{5}=21\)
\(\frac{2y}{6}=3\Rightarrow y=\frac{6\times3}{2}=9\)
Vậy \(x=21\) và \(y=9\)
b.
\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{38}=\frac{y}{21}=\frac{34}{17}=2\)
\(\frac{2x}{38}=2\Rightarrow x=\frac{38\times2}{2}=38\)
\(\frac{y}{21}=2\Rightarrow y=2\times21=42\)
Vậy \(x=38\) và \(y=42\)
c.
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\frac{x^2}{4}=\frac{1}{4}\Rightarrow x=\sqrt{1}=\pm1\)
\(\frac{y^2}{16}=\frac{1}{4}\Rightarrow y=\sqrt{\frac{16}{4}}=\sqrt{4}=\pm2\)
\(\frac{z^2}{36}=\frac{1}{4}\Rightarrow z=\sqrt{\frac{36}{4}}=\sqrt{9}=\pm3\)
Vậy \(x=1;y=2;z=3\) hoặc \(x=-1;y=-2;z=-3\)
d.
Cách 1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
\(6x=12\Rightarrow x=\frac{12}{6}=2\Rightarrow y=3\)
Vậy \(x=2\) và \(y=3\)
Cách 2:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+3y-1\right)-\left(2x+3y-1\right)}{5+7-6x}=0\)
\(2x+1=0\Rightarrow x=-\frac{1}{2}\)
\(3y-2=0\Rightarrow y=\frac{2}{3}\)
Vậy \(x=-\frac{1}{2}\) và \(y=\frac{2}{3}\)
Chúc bạn học tốt ^^
a) Ta có \(x:2=y:-5.\)
=> \(\frac{x}{2}=\frac{y}{-5}\) và \(x-y=14.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{14}{7}=2.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=2=>x=2.2=4\\\frac{y}{-5}=2=>y=2.\left(-5\right)=-10\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(4;-10\right).\)
k) Ta có \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}.\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}.\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\) và \(2x+3y-z=186.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{15}=3=>x=3.15=45\\\frac{y}{20}=3=>y=3.20=60\\\frac{z}{28}=3=>z=3.28=84\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(45;60;84\right).\)
Mình chỉ làm 2 câu thôi nhé.
Chúc bạn học tốt!
Bạn này riết quá, mình cũng đang bận nữa :(
b) \(21x=19y\Leftrightarrow\frac{x}{19}=\frac{y}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{14}{-2}=-7\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-38\\y=-42\end{matrix}\right.\)
Vậy...
c) Xem lại đề nhé.
d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2-z^2}{4+9-25}=\frac{-12}{-12}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4\\y^2=9\\z^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm2\\y=\pm3\\z=\pm5\end{matrix}\right.\)
Vậy...
e) \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)(1)
\(3y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{3}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=\frac{-720}{10}=-72\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-144\\y=-360\\z=-216\end{matrix}\right.\)
Vậy...
f) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=12\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)
g) Áp dụng TCDTSBN:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{2\cdot2+3\cdot3-4}\)
\(=\frac{2x-2+3y-6-z+3}{9}=\frac{45}{9}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)
Vậy...
h) \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y-z+1+x+z+2+x+y-3}{x+y+z}=\frac{2x+2y}{x+y+z}\)
Suy ra \(\frac{2x+2y}{x+y+z}=\frac{1}{x+y+z}\Leftrightarrow2x+2y=1\Leftrightarrow x+y=\frac{1}{2}\)
\(\Leftrightarrow\frac{\frac{1}{2}-3}{z}=\frac{1}{\frac{1}{2}+z}\Leftrightarrow z=\frac{5}{6}\)
Từ đó suy ra : \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=-3\)
Ta có hệ :
\(\left\{{}\begin{matrix}y-z+1=-3x\\x+z+2=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-\frac{5}{6}+1=-3x\\x+\frac{5}{6}+2=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+\frac{1}{6}=-3x\\x+\frac{17}{6}=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-3x-\frac{1}{6}\\x+\frac{17}{6}=-3\left(-3x-\frac{1}{6}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{7}{24}\\y=\frac{-25}{24}\end{matrix}\right.\)
Vậy...
Ta có : \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{y}{5}\)
Quy đòng : \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y+z}{8+12+15}=\frac{35}{35}=1\)
\(\Leftrightarrow\begin{cases}\frac{x}{8}=1\Rightarrow x=1.8=8\\\frac{y}{12}=1\Rightarrow y=1.12=12\\\frac{z}{15}=1\Rightarrow z=1.15=15\end{cases}\)
Vậy x = 8 ; y = 12 ; z = 15
\(a,\frac{15}{x}=\frac{2}{6}\)
\(\Leftrightarrow15.6=2x\)
\(\Leftrightarrow90=2x\)
\(\Leftrightarrow x=45\)
\(b,\frac{x}{4}=\frac{y}{3}\)và \(x-y=49\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{4}=\frac{y}{3}=\frac{x-y}{4-3}=49\)
\(\Leftrightarrow\frac{x}{4}=49\Leftrightarrow x=196\)
\(\Leftrightarrow\frac{y}{3}=49\Leftrightarrow y=147\)
\(c,\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\)và \(x-2y+5x=12\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}=\frac{x-2y+5z}{4-2.3+5.2}=\frac{12}{8}=\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{4}=\frac{3}{2}\Leftrightarrow x=6\)
\(\Leftrightarrow\frac{y}{3}=\frac{3}{2}\Leftrightarrow y=18\)
\(\Leftrightarrow\frac{z}{2}=\frac{3}{2}\Leftrightarrow z=36\)
Ta có: \(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
Từ: \(x-y-z=0\Rightarrow x-z=y;y-x=-z\) và \(y+z=x\)
Suy ra: \(B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\left(x;y;z\ne0\right)\)
Ta có:
\(\frac{3}{5}x=\frac{2}{3}y\)
=> \(x=\frac{2}{3}:\frac{3}{5}y\)
=> \(x=\frac{2}{3}.\frac{5}{3}y\)
=> \(x=\frac{10}{9}y=\frac{y}{\frac{9}{10}}\)
=> \(x^2=\frac{y^2}{\frac{81}{100}}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(x^2=\frac{y^2}{\frac{81}{100}}=\frac{x^2-y^2}{1-\frac{81}{100}}=\frac{38}{\frac{19}{100}}=38.\frac{100}{19}=200\)
=> \(\begin{cases}x^2=200\\y^2=200.\frac{81}{100}=162\end{cases}\)
Đến đây dễ r`
\(\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}=\frac{x+11}{15}+\frac{x+11}{16}\)
\(\Rightarrow\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}-\frac{x+11}{15}-\frac{x+11}{16}=0\)
\(\Rightarrow\left(x+11\right)\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)=0\)
Mà \(\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)\ne0\)
\(\Rightarrow x+11=0\Rightarrow x=-11\)
a) Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{y-x}{3-2}=\frac{14}{1}=14\)
=> \(\begin{cases}x=28\\y=42\end{cases}\)
b) Từ 2x = 7y => \(\frac{2x}{14}=\frac{7y}{14}\Rightarrow\frac{x}{7}=\frac{y}{2}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{2}=\frac{x+y}{7+2}=\frac{36}{9}=4\)
=> \(\begin{cases}x=28\\y=8\end{cases}\)
c) Từ \(\frac{x}{y}=\frac{3}{7}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{y-x}{3-7}=\frac{20}{-4}=-5\)
=> \(\begin{cases}x=-35\\y=-15\end{cases}\)
d) Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\begin{cases}x=2k\\y=3k\end{cases}\)
Vì xy = 24 => 2k.3k = 24 => 6k2 = 24 => k2 = 4 => k = \(\pm\) 2
Với k = 2 => \(\begin{cases}x=4\\y=6\end{cases}\)
Với k = -2 => \(\begin{cases}x=-4\\y=-6\end{cases}\)
mọi người làm ơn giúp mk với