Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: a) Do (3-2x)2 \(\ge0\) và (y-5)20 \(\ge0\)
mà (3-2x)2+(y-5)20\(\le0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3-2x\right)^2=0\\\left(y-5\right)^{20}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-2x=0\\y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=3-0=3\\y=0+5=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=5\end{matrix}\right.\)
Vậy: \(x=\frac{3}{2};y=5\)
c) x là các số nguyên hả bạn?
Do (x-3).(x-4)\(\le0\)
\(\Rightarrow\) Có hai trường hợp:
TH1: (x-3)(x-4)=0
Trong hai số (x-3) và (x-4) có một số bằng 0.
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0+3=3\\x=0+4=4\end{matrix}\right.\)
TH2: (x-3)(x-4)<0
Trong hai số x-3 và x-4 có một số là số nguyên dương, 1 số là số nguyên âm.
mà x-4<x-3 \(\Rightarrow\) x-4 là số nguyên âm ( x-4<0) \(\Leftrightarrow\) x<4 (1)
x-3 là số nguyên dương (x-3>0) \(\Rightarrow x>3\) (2)
Từ (1) và (2) \(\Rightarrow\) 3<x<4 mà x là các số nguyên nên x ko tm
Vậy: x\(\in\left\{3;4\right\}\)
Bài 2:
c) (x-12).(y+5)=7=1.7=7.1=-1.-7=-7.-1
\(\Rightarrow\) \(\left[{}\begin{matrix}x-12=1;y+5=7\\x-12=7;y+5=1\\x-12=-1;y+5=-7\\x-12=-7;y+5=-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=13;y=2\\x=19;y=-4\\x=11;y=-12\\x=5;y=-6\end{matrix}\right.\)
Vậy:...
\(a,\left(x+3\right)\left(y+2\right)=1\)
=> x+3 và y+2 thuộc UC(1)={1; -1}
x+3 | 1 | -1 |
x | -2 | -4 |
y+2 | 1 | -1 |
y | -1 | -3 |
Vậy x=-2; y=-4
x=-1; y=-4
Câu sau tương tự
\(a,\left(x+3\right)\left(y+2\right)=1\)
Th1 : \(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)
KL : \(\left\{\left(x=-2;y=-1\right);\left(x=-4;y=-3\right)\right\}\)
\(d,3x+4y-xy=16\)
\(=3x-xy+4y-12=4\)
\(\Rightarrow-x\left(y-3\right)+4\left(y-3\right)=4\)
\(\Rightarrow\left(y-3\right)\left(4-x\right)=4\)
Chia các trường hợp như câu a của chị ra em nhé
Mk chỉ làm một ý các câu còn lại bn làm tương tự nha:
a) (x+5).(y-3)=0
Vì x,y thuộc Z nên x+5 thuộc z và y-3 thuộc Z
Vì (x+5).(y-3)=0
=> x+5=0 hoặc y-3=0
(+) x+5=0
x=0-5
x=-5
(+) y-3=0
y=0+3
y=3
Vậy x=-5 và y thuộc Z
hoặc y=3 và x thuộc Z
Nhớ tick cho mk nhé Kim Taehyungie.Dạng này mấy hôm trước mk mới hok nên đúng 100% đấy.Cô mk dạy y hệt như thế này lun
Riên cái câu a đấy thì khác vs 3 câu còn lại nhé nên mk sẽ làm giúp cậu 1 câu còn 2 câu cậu tự làm như câu này nhé:
B) (x-7).(2+y)=13
Vì x,y thuộc Z nên x-7 thuộc Z và 2+y thuộc Z
Vì (x-7).(2+y)=13
=> x-7 thuộc Ư(13)
Ta có Ư(13)={1;13;-1;-13) (tại sao lại có -1 và -13 vì x thuộc z nhé)
Do đó: x-7 thuộc{1;13;-1;-13}
Ta có bảng sau:Bn tự kẻ ra và làm nhé.Cứ thay x vào rồi tìm như bình thường nhé
a, [x+1]2 + [y+5]2 = 16
Theo đề, ta có: 0 \(\le\)[x+1]2 \(\le\)16; 0\(\le\)[y+5]2 \(\le\)16
Dễ dàng nhận thấy [x+1]2 và [y+5]2 là hai số chính phương, mà từ 0 - 16 chỉ có hai số chính phương 0 và 16 là có tổng là 16
=> Có hai trường hợp:
* \(\hept{\begin{cases}\left[x+1\right]^2=0\\\left[y+5\right]^2=16\end{cases}\Rightarrow}\hept{\begin{cases}x+1=0\\\hept{\begin{cases}y+5=4\\y+5=-4\end{cases}}\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases};}\hept{\begin{cases}x=-1\\y=-9\sqrt[]{}\sqrt[]{}\end{cases}}}\)
a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
d,
|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
2.Tìm x, y, z biết
a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)
Đăng từ từ từng câu thoy bn!!