K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: =>x=0 hoặc x+3=0

=>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

18 tháng 5 2017

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

18 tháng 5 2017

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

16 tháng 7 2016

a) (x-3)+(x-2)+(x-1)+....+10+11=11

(x-3)+(x-2)+(x-1)+....+10      =0

gọi số hạng của tổng vế trái là  n

(x-3+10).\(\frac{n}{2}\)=0

(x+7).n:2=0

(x+7)  =0

\(\Rightarrow\)x+7=0           (do n\(\ne\)0)

       x=0-7

       x=-7

b) \(\frac{2}{3}\left[\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right]<=x<=4\frac{1}{3}.\left[\frac{1}{2}-\frac{1}{6}\right]\)

     \(\frac{2}{3}.\frac{11}{12}<=x<=\frac{13}{3}.\frac{1}{3}\)

      \(\frac{11}{18}<=x<=\frac{13}{9}\)

do x\(\in\)z nên x=1

vậy x=1

14 tháng 7 2016

b./ \(\Leftrightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1.\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)(b)

Mà \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}< 0\)

(b) \(\Leftrightarrow x+2010=0\Leftrightarrow x=-2010\)

14 tháng 7 2016

a./

\(\Leftrightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0.\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)(a)

Mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}>0\)

(a) \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

12 tháng 5 2017

Bài giải:

a, \(11.xx-66=4.x+11\)

\(11x^2-66=4.x+11\)

\(11x^2-66-4.x-11=0\)

\(11x^2-77-4x=0\)

\(11x^2-4x-77=0\)

\(x=\frac{-\left(-4\right)+\sqrt{\left(-4\right)^2-4.11.\left(-77\right)}}{2.11}\)

\(x=\frac{4+\sqrt{16}+3388}{22}\)

\(x=\frac{4+\sqrt{3404}}{22}\)

\(x=\frac{4+2\sqrt{851}}{22}\)

\(x=\frac{2-\sqrt{851}}{11}\)

\(\Rightarrow\)Có hai trường hợp: \(x_1=\frac{2-\sqrt{851}}{11};x_2=\frac{2+\sqrt{851}}{11}\)

Tớ bận rồi, cậu coi câu trên đã nhé ! Tớ xin lỗi, khi nào tớ sẽ làm tiếp =)) 

12 tháng 5 2017

dấu trừ đầu tiên các bạn thay thành số 4 hộ mik nhé

29 tháng 5 2017

a, (x2 - 5)(x2 - 24) < 0

=> x2 - 5 và x2 - 24 trái dấu

Mà x2 - 5 > x2 - 24 => \(\hept{\begin{cases}x^2-5>0\\x^2-24>0\end{cases}\Rightarrow5< x^2< 24}\)

Vì x \(\in\)Z nên x2 = 9;16

+) x2 = 9 => x = 3 hoặc x = -3

+) x2 = 16 => x = 4 hoặc x = -4

Vậy...

b,

\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Mà \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)

=> x + 1 = 0 => x = 0 - 1 => x = -1

\(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)

\(\Rightarrow\left(\frac{x+1}{14}+1\right)+\left(\frac{x+2}{13}+1\right)=\left(\frac{x+3}{12}+1\right)+\left(\frac{x+4}{11}+1\right)\)

\(\Rightarrow\frac{x+15}{14}+\frac{x+15}{13}=\frac{x+15}{12}+\frac{x+15}{11}\)

\(\Rightarrow\frac{x+15}{14}+\frac{x+15}{13}-\frac{x+15}{12}-\frac{x+15}{11}=0\)

\(\Rightarrow\left(x+15\right)\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)=0\)

Mà \(\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)\ne0\)

=> x + 15 = 0 => x = 0 - 15 => x = -15

6 tháng 7 2017

\(-\frac{9}{11}\cdot\frac{3}{8}-\frac{9}{11}\cdot\frac{5}{8}+\frac{17}{11}=-\frac{9}{11}\left(\frac{3}{8}+\frac{5}{8}\right)+\frac{17}{11}=-\frac{9}{11}\cdot1+\frac{17}{11}=1\)

\(\frac{2}{1.3}+....+\frac{2}{53.55}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{53}-\frac{1}{55}=1-\frac{1}{55}=\frac{54}{55}\)

\(x+5-\frac{1}{2}=3\frac{1}{2}\)

\(x+5=3.5+0.5=4\)

\(x=4-5=-1\)

\(3^{x+1}=27=3^3\)

\(x+1=3\)

vậy x=2

6 tháng 7 2017

bây h bn mún tớ iair hộ bn trừ câu cuối ko

15 tháng 7 2015

\(A=\frac{1}{1.4.7}+\frac{1}{4.7.10}+...+\frac{1}{54.57.60}\)

\(\Rightarrow6A=\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}\)

\(=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.47}-\frac{1}{57.60}\)

\(=\frac{1}{4}-\frac{1}{3420}=\frac{855}{3420}-\frac{1}{3420}=\frac{427}{1710}\)

\(\Rightarrow A=\frac{427}{1710}:6=\frac{427}{1710}.\frac{1}{6}=\frac{427}{10260}\)

15 tháng 7 2015

Nhận thấy: 

\(\frac{6}{1.4.7}=\frac{1}{1.4}-\frac{1}{4.7}\)

...............

\(\frac{6}{54.57.60}=\frac{1}{54.57}-\frac{1}{57.60}\)

=> ta phải nhân A vói 6 

=> 6A = 

\(\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}=\frac{1}{4}-\frac{1}{57.60}=\frac{427}{1710}\)

=> A = 427/1710 : 6 =427/10260

25 tháng 7 2018

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{13\cdot15}\)

\(=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{13\cdot15}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{15}\right)\)

\(=\frac{1}{2}\cdot\frac{14}{15}\)

\(=\frac{7}{15}\)

25 tháng 7 2018

Sửa đề chút nhé:

\(\left(1+3+5+7+...+2009+2011\right).\left(125125.127-127127.125\right)\)

\(=\left(1+3+5+7+...+2009+2011\right).\left(125.1001.127-127.1001.125\right)\)

\(=\left(1+3+5+7+...+2009+2011\right).0\)

\(=0\)

Ý b tham khảo bài bạn nguyen thi thuy linh nhé