Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{3}{7}-x=\dfrac{1}{2}x-3\)
\(\Rightarrow-x-\dfrac{1}{2}x=-3-\dfrac{3}{7}\)
\(\Rightarrow-\dfrac{3}{2}x=-\dfrac{24}{7}\)
\(\Rightarrow x=-\dfrac{24}{7}:\left(-\dfrac{3}{2}\right)\)
\(\Rightarrow x=\dfrac{16}{7}\)
\(b,5x-\dfrac{2}{3}=\dfrac{5}{3}-2x\)
\(\Rightarrow5x+2x=\dfrac{5}{3}+\dfrac{2}{3}\)
\(\Rightarrow7x=\dfrac{7}{3}\)
\(\Rightarrow x=\dfrac{7}{3}:7\)
\(\Rightarrow x=\dfrac{1}{3}\)
#Toru
a: 3/7-x=1/2x-3
=>-3/2x=-3+3/7
=>-1/2x=-1+1/7=-6/7
=>1/2x=6/7
=>x=6/7*2=12/7
b: =>5x+2x=5/3+2/3
=>7x=7/3
=>x=1/3
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
a: \(-4x\left(x-5\right)-2x\left(8-2x\right)=-3\)
=>\(-4x^2+20x-16x+4x^2=-3\)
=>4x=-3
=>\(x=-\dfrac{3}{4}\)
b: \(-7\left(x+9\right)-3\left(5-x\right)=2\)
=>\(-7x-63-15+3x=2\)
=>\(-4x-78=2\)
=>\(-4x=78+2=80\)
=>\(x=\dfrac{80}{-4}=-20\)
a: \(\left|3x-2\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=4\\3x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b: Ta có: \(\left|5x-3\right|=\left|x-7\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=x-7\\5x-3=7-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-4\\6x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{3}\end{matrix}\right.\)
a: =>1/2x-3/4x=-5/6+7/3
=>-1/4x=14/6-5/6=3/2
=>x=-3/2*4=-6
b: =>4/5x-3/2x=1/2+6/5
=>-7/10x=17/10
=>x=-17/7
c: =>6/5x+6/20=6/5-1/3x
=>6/5x+1/3x=6/5-3/10=12/10-3/10=9/10
=>x=27/46
d: =>6x+3/2+4/5=1/2-2x
=>8x=1/2-3/2-4/5=-1-4/5=-9/5
=>x=-9/40
a: 3x=7y
=>x/7=y/3=(x-y)/(7-3)=-16/4=-4
=>x=-28; y=-12
b: x/6=y/5
=>x/6=2y/10=(x+2y)/(6+10)=20/16=5/4
=>x=30/4=15/2; y=25/4
c: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2\cdot2+3\cdot\left(-3\right)+5\cdot5}=\dfrac{6}{20}=\dfrac{3}{10}\)
=>x=3/5; y=-9/10; z=3/2
d: x/2=y/3
=>x/8=y/12
y/4=z/5
=>y/12=z/15
=>x/8=y/12=z/15
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
=>x=16; y=24; z=30
a) Ta có số đối của 2,5 là -2,5
\(\Rightarrow x-3,5=-2,5\)
\(\Rightarrow x=-2,5+3,5\)
\(\Rightarrow x=1\)
b) Ta có số đối của -12 là 12
\(\Rightarrow3x-12=12\)
\(\Rightarrow3x=24\)
\(\Rightarrow x=\dfrac{24}{3}=8\)
c) Ta có số đối của \(-\dfrac{1}{8}\) là \(\dfrac{1}{8}\)
\(\Rightarrow2x+\dfrac{1}{4}=\dfrac{1}{8}\)
\(\Rightarrow2x=\dfrac{1}{8}-\dfrac{1}{4}\)
\(\Rightarrow2x=-\dfrac{1}{8}\)
\(\Rightarrow x=-\dfrac{1}{8}:2\)
\(\Rightarrow x=-\dfrac{1}{16}\)
d) Bạn viết lại đề
`#3107.101107`
`1.`
`a,`
`(2x - 3)^2 = |3 - 2x|`
`=> (2x - 3)^2 = |2x - 3|`
`=>`\(\left[{}\begin{matrix}2x-3=\left(2x-3\right)^2\\2x-3=-\left(2x-3\right)^2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x-3-\left(2x-3\right)^2=0\\2x-3+\left(2x-3\right)^2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}\left(2x-3\right)\left(1-2x+3\right)=0\\\left(2x-3\right)\left(1+2x-3\right)=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x-3=0\\4-2x=0\\2x-2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=1\end{matrix}\right.\)
Vậy, `x \in {3/2; 2; 1}`
`b,`
`(x - 1)^2 + (2x - 1)^2 = 0`
`=>`\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(2x-1\right)^2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x \in {1; 1/2}`
`c,`
`5 - x^2 = 1`
`=> x^2 = 4`
`=> x^2 = (+-2)^2`
`=> x = +-2`
Vậy, `x \in {-2; 2}`
`d,`
`x - 2\sqrt{x} = 0`
`=> x^2 - (2\sqrt{x})^2 = 0`
`=> x^2 - 4x = 0`
`=> x(x - 4) = 0`
`=>`\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy, `x \in {0; 4}`
`g,`
`(x - 1) + 1/7 = 0`
`=> x - 1 + 1/7 = 0`
`=> x - 6/7 = 0`
`=> x = 6/7`
Vậy, `x = 6/7.`
\(a,-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+1}{6}=\dfrac{8}{3}\)
\(\Rightarrow-\dfrac{6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{-6x+8x+3x+3+4x+2}{12}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{9x+5}{12}=\dfrac{8}{3}\)
\(\Rightarrow27x+15=96\)
\(\Rightarrow27x=81\)
\(\Rightarrow x=3\left(tm\right)\)
\(b,\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3+5-2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow2x+1=13\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\left(tm\right)\)
#Toru
a) \(-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+2}{6}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{-6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{4\cdot8}{12}\)
\(\Rightarrow-6x+8x+3x+3+4x+2=32\)
\(\Rightarrow9x+5=32\)
\(\Rightarrow9x=32-5\)
\(\Rightarrow9x=27\)
\(\Rightarrow x=\dfrac{27}{9}\)
\(\Rightarrow x=3\)
b) \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\) (ĐK: \(x\ne-\dfrac{1}{2}\))
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow2x+1=13\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=\dfrac{12}{2}\)
\(\Rightarrow x=6\left(tm\right)\)
a) | x-5|=2x+3
=>x-5=-(2x+3) hoặc 2x+3
Xét x-5=-(2x+3)
=>x-5=-2x-3
=>3x=2
=>x\(=\frac{2}{3}\)
Xét x-5=2x+3
=>x=-8 (loại)
Vậy x\(=\frac{2}{3}\)
a/ \(\left|x-5\right|=2x+3\)
Xét : Với \(x\ge5\) thì pt trở thành x-5 = 2x+3 => x = -8 (không tm)
Với x < 5 thì pt trở thành 5-x = 2x+3 => x = 2/3 (tm)
Vậy x = 2/3
b/ \(3-\left|3x+1\right|=-6\)
Xét : Với \(x\ge-\frac{1}{3}\) pt trở thành 3-(3x+1) = -6 => x = 8/3 (tm)
Với \(x< -\frac{1}{3}\) pt trở thành 3+(3x+1) = -6 => x = -10/3 (tm)
Vậy \(x\in\left\{-\frac{10}{3};\frac{8}{3}\right\}\)