K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2023

1)

a) => 16x2 - 8x + 1 - 8(2x2 + 3x - 4x - 6) = 15

=> 16x2 - 8x + 1 - 8(2x2 - x - 6) = 15

=> 16x2 - 8x + 1 - 16x2 + 8x + 48 = 15

=> 49 = 15 (?) (vô lí)

=> Không tìm được x thoả mãn

b) (5x - 2)(x - 2) - 4(x - 3) = x2 + 3

=> 5x2 - 10x - 2x + 4 - 4x + 12 = x2 + 3

=> 5x2 - 16x + 16 = x2 + 3

=> 4x2 - 16x + 16 = 3

=> (2x)2 - 2.2x.4 + 42 = 3

=> (2x - 4)2 = 3

=> \(\left[{}\begin{matrix}2x-4=\sqrt{3}\\2x-4=-\sqrt{3}\end{matrix}\right.\)           \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4+\sqrt{3}}{2}\\x=\dfrac{4-\sqrt{3}}{2}\end{matrix}\right.\)

Mong bạn xem lại đề bài!

13 tháng 8 2023

2) 

a) 5x2 - 10xy + 5y2 - 20z2

= 5(x2 - 2xy + y2 - 4z2)

= 5[(x - y)2 - (2z)2]

= 5(x - y - 2z)(x - y + 2z)

b) a3 - ay - a2x + xy

= a(a2 - y) - x(a2 - y)

= (a - x)(a2 - y)

c) 3x2 - 6xy + 3y2 - 12z2

= 3(x2 - 2xy + y2 - 4z2)

= 3[(x - y)2 - (2z)2]

= 3(x - y - 2z)(x - y + 2z)

d) x2 - 2xy + tx - 2ty

= x(x - 2y) + t(x - 2y)

= (x + t)(x - 2y)

17 tháng 12 2017

a.5x2-10xy+5y2-20z2

  =5(x2-2xy+y2-4z2)

  =5[ (x2-2xy+y2)-(2z)]

  =5[ (x-y)2-(2z)2 ]

  =5(x-y-2z)(x-y+2z)

b.16x-5x2-3

  =15x+x-5x2-3

  =(15x-3)+(x-5x2)

  =3(5x-1)+x(1-5x)

  =3(5x-1)-x(5x-1)

  =(5x-1)(3-x)

c.x2-5x+5y-y2

  =(5y-5x)+(x2-y2)

  =5(y-x)+(x-y)(x+y)

  =5(y-x)-(y-x)(y+x)

  =(y-x)[5-(y+x)]

  =(y-x)(5-y-x)

d.3x2-6xy+3y2-12z2     (câu này hình như ở trên đề bạn ghi sai nha! Mình sửa lại luôn rồi đó)

=3(x2-2xy+y2-4z2)

=3[ (x2-2xy+y2)-(2z)2 ]

=3[ (x-y)2-(2z)2 ]

=3(x-y-2z)(x-y+2z)

e.x2+4x+3

=x2+3x+x+3

=(x2+x)+(3x+3)

=x(x+1)+3(x+1)

=(x+1)(x+3)

f.(x2+1)2-4x2

=(x2+1)2-(2x)2

=(x2+1-2x)(x2+1+2x)

h.x2-4x-5

=x2-5x+x-5

=(x2+x)+(-5x-5)

=x(x+1)-5(x+1)

-(x+1)(x-5)

27 tháng 7 2023

a Đề sai: )

b

\(a^3-a^2x-ay+xy\\ =a^2\left(a-x\right)-y\left(a-x\right)\\ =\left(a-x\right)\left(a^2-y\right)\)

c

\(4x^2-y^2+4x+1\\ =\left(2x\right)^2+2.2x.1+1-y^2\\ =\left(2x+1\right)^2-y^2\\ =\left(2x+1-y\right)\left(2x+1+y\right)\)

d

\(x^4+2x^3+x^2\\ =x^4+x^3+x^3+x^2\\ =x^3\left(x+1\right)+x^2\left(x+1\right)\\ =\left(x^3+x^2\right)\left(x+1\right)\)

e

\(5x^2-10xy+5y^2-5z^2\\ =5\left(x^2-2xy+y^2-z^2\right)\\ =5\left[\left(x-y\right)^2-z^2\right]\\ =5\left(x-y-z\right)\left(x-y+z\right)\)

c: =(2x+1)^2-y^2

=(2x+1+y)(2x+1-y)

d: =x^2(x^2+2x+1)

=x^2(x+1)^2

e: =5(x^2-2xy+y^2-z^2)

=5[(x-y)^2-z^2]

=5(x-y-z)(x-y+z)

25 tháng 8 2021

bạn viết lại đề đi, có số mũ, xuống dòng chứ thế này ai mà giải được

15 tháng 10 2017

a, x^2-9+(x-3)^2 = (x-3)(x+3)+(x-3)^2=(x-3)(x+3+x-3)=2x(x-3)

b,có sai k ạ ! vì mình thấy tự nhiên có ẩn y ở đó , nếu đề bài 2 ẩn thì 1 trong 3 hạng tử chứa ẩn x kia phải có thêm 1 ẩn y

c,đề bài thiếu  ẩn ở hạng tử thứ nhất ạ !

15 tháng 10 2017

b mình viết đúng rồi mà, c hạng tử 1 là x^3

17 tháng 10 2021

làm ơn giúp e vs

17 tháng 10 2021

\(1,=\left(x-2\right)\left(5-y\right)\\ 2,=2\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(2x-2y-z\right)\\ 3,=5xy\left(x-2y\right)\\ 4,=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-4z^2\right]\\ =3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\\ 6,=-\left(6x^2-3x-4x+2\right)=-\left(2x-1\right)\left(3x-2\right)\\ 7,=\left(2x+y\right)\left(2x+y+x\right)=\left(2x+y\right)\left(3x+y\right)\\ 8,=\left(x-y\right)\left(x+5\right)\\ 9,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\\ 10,=\left(x^2-9\right)x=x\left(x-3\right)\left(x+3\right)\\ 11,=\left(x-2\right)\left(y+1\right)\\ 12,=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\\ 13,=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)

9 tháng 9 2016

Dễ nhưng mà dài chết người oegianroi

10 tháng 9 2016

giải dùm mình với đi ạ,mình cảm ơn

 

10 tháng 9 2016

Bài 1 : 

x2-2x+2>0 với mọi x

=x2-2.x.1/4+1/16+31/16

=(x-1/4)2 + 31/16

Vì (x-1/4)2 \(\ge\) 0 nên (x-1/4)2 + 31/16 \(\ge\) 0 với mọi x (đfcm)

11 tháng 9 2016

thanks

 

20 tháng 10 2023

a) Xem lại đề

b) x³ - 4x²y + 4xy² - 9x

= x(x² - 4xy + 4y² - 9)

= x[(x² - 4xy + 4y² - 3²]

= x[(x - 2y)² - 3²]

= x(x - 2y - 3)(x - 2y + 3)

c) x³ - y³ + x - y

= (x³ - y³) + (x - y)

= (x - y)(x² + xy + y²) + (x - y)

= (x - y)(x² + xy + y² + 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

f) 3x² - 6xy + 3y² - 5x + 5y

= (3x² - 6xy + 3y²) - (5x - 5y)

= 3(x² - 2xy + y²) - 5(x - y)

= 3(x - y)² - 5(x - y)

= (x - y)[(3(x - y) - 5]

= (x - y)(3x - 3y - 5)