Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số A đó là abc
Theo bài ra, ta có:
abcabc:7:11:13 = abc
abcabc:1001 = abc
abcabc = abc.1001
bài toán đc chứng minh
Gọi A là abc thì B=abc.1000+abc
Theo đề bài ta có
(abc.1000+abc):7:11:13=abc
abc(1000+1)=abc.1001
abc(1000+1)=abc.1001
Vậy đó mình giải thích xong rồi suy ra B:7:11:13=A
Số A bất kỳ có 3 chữ số tổng quát là: \(\overline{xyz}\)
Số B là: \(\overline{xyzxyz}=\overline{xyz}\cdot1001=\overline{xyz}\cdot7\cdot11\cdot13\)
Chia B cho 7 được: \(B:7=\overline{xyz}\cdot11\cdot13=B_1\)
Chia thương tìm được B1 cho 11 được: \(B_1:11=\overline{xyz}\cdot13=B_2\)
Chia thương tìm được B2 cho 13 được: \(B_2:13=\overline{xyz}=A\).
gọi số A là abc và B là abcabc
B=abcabc=abcx1001
Chia số B cho 7, rồi chia thương tìm được cho 11, sau đó lại chia thương tìm được cho 13:
abcx2001:7:11:13=abc
Do đó được số a.
Gọi số A là abc. Khi đó số B là abcabc.
Phân tích B=abcabc=abc000+abc=abc.1000+abc=abc.1001=abc.7.11.13.
Bây giờ chia B cho 7,11,13 thì sẽ được A thôi!
Viết một số A bất kì có 3 chữ số , viết tiếp 3 chữ số đó một lần nữa , được số B có 6 chữ số . Chia số B cho 7 , rồi chia thương tìm được cho 11 , sau đó lại chia thương tìm được cho 13 . Kết quả được số A , hãy giải thích vì sao ?
Gọi số A là abc. Khi đó số B là abcabc.
Phân tích B=abcabc=abc000+abc=abc.1000+abc=abc.1001=abc.7.11.13.
Bây giờ chia B cho 7,11,13 thì sẽ được A thôi!
Gọi số a là xyz, ta có b = xyzxyz = xyz . 1001
b / 7 / 11 / 13 = b / 1001 = xyzxyz / 1001 = xyz = a
Hết.
Mình có cách phân tích khác nhé :
Gọi A là \(\overline{abc}\) thì ta được : B = \(\overline{abc}.1000+\overline{abc}\)
Theo bài ra ta có :
\(\left(\overline{abc}.1000+\overline{abc}\right):7:11:13=\overline{abc}\)
\(\overline{abc}\left(1000+1\right)=\overline{abc}.7.11.13\)
\(\overline{abc}.1001=\overline{abc}.1001\)
(A=overline{abc}), (B=overline{abcabc}).Ta có:
(overline{abc}).7.11.13=(overline{abc}).1001=(overline{abcabc}) nên
(overline{abcabc}):7:11:13=(overline{abc})
1,\(a,\overline{aaa}\div a=111\)
\(b,\overline{abab}\div\overline{ab}=101\)
\(c,\overline{abc}\cdot\overline{abc}\div\overline{abc}=\overline{abc}\)
2, Giẩi
Ta gọi số đó là abc
Khi viết thêm được abcabc
Ta có :
abcabc : 7 : 11 : 13 = abc
=> abc x 11 x 7 x 13 = abcabc
=> abc x 1001 = abcabc
Vì quy ước abc x 1001 = abcabc nên mk đã chứg minh thành công