Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 332 chia cho a dư 17nên 332 – 17 = 315a và a > 17.
Vì 555 chia cho a dư 15 nên 555 – 15 = 540a và a > 15
=> a ∈ ƯC(315,540) và a > 17
Ta có: 315 = 3 2 . 5 . 7 ; 105 = 2 2 . 3 3 . 5 => ƯCLN(315,540) = 3 2 . 5 = 45
Do đó: a ∈ ƯC(315,540) = Ư(45) = {1;3;5;9;15;45}
Vì a > 17 nên a = 45
Vậy a = 45
Theo bài ra ta có :
332 : a dư 17 => 332 - 17 = 315 \(⋮\)a ( a > 17 )
555 : a dư 15 => 555 - 15 = 540 \(⋮\)a ( a > 15 )
Suy ra a\(\in\)ƯC ( 315, 540 )
Ta có : 315 = 32 . 5 . 7
540 = 22 . 32 . 5
=> ƯC ( 315, 540 ) = 32 . 5 = 45
=> ƯC ( 315, 540 ) = Ư ( 45 ) = { 1 ; 3 ; 5 ; 9 ; 15 ; 45 }
Vì a > 17 nên a = 45
Vậy a = 45
Theo bài ra, ta có:
332-17 chia hết cho a
555-15 chia hết cho a
=> 315 chia hết cho a
540 chia hết cho a
=> a thuộc ƯC (315, 540)
Có:
315 = 32 . 5 .7
540 = 32 . 22 . 5
=> ƯCLN (315, 540) = 32 . 5 = 45
=> ƯC(315, 540)= Ư(45) = { 1, 3, 5, 9, 15, 45 } (tmđk)
Vậy, a thuộc { 1, 3, 5, 9, 15, 45 }
Theo bài ra, ta có:
332-17 chia hết cho a
555-15 chia hết cho a
=> 315 chia hết cho a
540 chia hết cho a
=> a thuộc ƯC (315, 540)
Có:
315 = 32 . 5 .7
540 = 32 . 22 . 5
=> ƯCLN (315, 540) = 32 . 5 = 45
=> ƯC(315, 540)= Ư(45) = { 1, 3, 5, 9, 15, 45 } (tmđk)
Vậy, a thuộc { 1, 3, 5, 9, 15, 45 }
Theo bài ra, ta có: \(\left(167-17\right)⋮a,\left(235-25\right)⋮a\left(a>25\right)\) (số chia luôn lớn hơn số dư)
hay \(150⋮a,210⋮a\Rightarrow a\inƯC\left(150;210\right)\)
\(150=2.3.5^2\)
\(210=2.3.5.7\)
\(ƯCLN\left(150;210\right)=2.3.5=30\)
\(a\inƯ\left(ƯCLN\left(150;210\right)\right)\inƯ\left(30\right)=\left\{1;2;3;5;6;10;15;30\right\}\)
Mà a > 25 nên a = 30
167 : a dư 17
=> 167 - 17 chia hết cho a
=> 150 chia hết cho a (1)
235 : a dư 25
=> 235 - 5 chia hết cho a
=> 210 chia hết cho a (2)
Từ (1) và (2) => a thuộc ƯC(150;210) = { 1; 2; 3; 5; 6; 10; 15; 30 }
Mà số chia lớn hơn số dư => a > 17 => a = 30 ( thỏa mãn )
Vậy a = 30
a) Vì 13, 15,61 chia cho a đều dư 1 => 13;15;61 \(⋮a-1\)
=> a-1 thuộc ƯC(13;15;61)
Mà a lớn nhất => a-1 thuộc ƯCLN(13,15,61)
Mà 13;15;61 là các số nguyên tố cùng nhau => ƯCLN(13;15;61) = 1
=> a-1=1
=>a=2
Vậy a=2.
b) Ta có: 149 : a dư 29 => (149-29) thì chia hết cho a ( a > 29)
235 : a dư 35 => ( 235 - 35) chia hết cho a ( a> 35)
=> a thuộc ƯCLN(120,200) = 40
=> a = 40
Vậy a = 40
c) câu c tương tự câu b
1.
Vì 332:a dư 17 => \(332-17⋮a\)=>\(315⋮a\)
555:a dư 15 =>\(555-15⋮a\)=>\(540⋮a\)
=> \(a\inƯC\left(315;540\right)\)
*ƯCLN(315;540)
315= 32.5.7
540= 22.33.5
=>ƯCLN(315;540)= 32.5 = 45
=> ƯC(315;540) = Ư(45) = \(\left\{1;3;5;9;15;45\right\}\)
KL:\(a\in\left\{1;3;5;9;15;45\right\}\)
2.
Vì 13:a dư 1 => 13-1 \(⋮\) a => 12 \(⋮\) a
15:a dư 1 => 15-1 \(⋮\) a => 14 \(⋮\) a
61:a dư 1 => 61-1 \(⋮\) a => 60 \(⋮\) a
a max
=> a \(\in\) ƯCLN(12;14;60)
12 = 22.3
14 = 2.7
60 = 22.3.5
=>ƯCLN(12;14;60)= 2
KL: a = 2
3.
Vì 167:a dư 17 => \(167-17⋮a\) => \(150⋮a\)
235:a dư 25 => \(235-25⋮a\) => \(210⋮a\)
=> \(a\inƯC\left(150;210\right)\)
*ƯCLN(150;210)
150= 2.3.52
210= 2.3.5.7
=>ƯCLN(150;210)= 2.3.5 = 30
=> ƯC(150;210) = Ư(30) = \(\left\{1;2;3;5;6;10;15;30\right\}\)
KL: \(a\in\left\{1;2;3;5;6;10;15;30\right\}\)