Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^2}{a^2b^2+1}+\frac{b^2}{a^2b^2+1}=\frac{1}{a^2}+\frac{1}{b^2}\)
\(\Leftrightarrow\frac{a^2+b^2}{a^2b^2+1}=\frac{a^2+b^2}{a^2b^2}\)\(\Leftrightarrow a^2b^2\left(a^2+b^2\right)=\left(a^2+b^2\right)\left(a^2b^2+1\right)\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(a^2b^2-a^2b^2-1\right)=0\)
\(\Leftrightarrow a^2+b^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\)
a, \(\left(a^2+b^2-2ab+2a-2b+1\right)+\left(b^2-2b+1\right)=0\)
=> \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)
Mà \(\left(a-b+1\right)^2\ge0,\left(b-1\right)^2\ge0\)
=> \(\hept{\begin{cases}a-b+1=0\\b=1\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}}\)
b,Tương tự
\(\left(a-2b+1\right)^2+\left(b-1\right)^2=0\)
=>\(\hept{\begin{cases}a=1\\b=1\end{cases}}\)
a: Ápdụng tính chất của DTSBN, ta được:
\(\dfrac{a}{5}=\dfrac{b}{-2}=\dfrac{a+b}{5-2}=\dfrac{12}{3}=4\)
=>a=20; b=-8
b: 5a=4b
=>a/4=b/5
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{3a-2b}{3\cdot4-2\cdot5}=\dfrac{42}{2}=21\)
=>a=84; b=105
bài 1:
tìm a,b,c biết:
3a = 2b; 4b = 3c và a + 2b - 3c
giải
\(3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3};4b=3c\Rightarrow\frac{b}{3}=\frac{c}{4}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\) và a + 2b - 3c
áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
với \(\frac{a}{2}=5\Rightarrow a=5.2=10\)
với \(\frac{2b}{6}=5\Rightarrow b=\frac{5.6}{2}=15\)
với \(\frac{3c}{12}=5\Rightarrow c=\frac{5.12}{3}=20\)
vậy a = 10,b=15,c=20
tương tự câu 2