Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, TH1: x = 1 => n4 + 4 = 5 là số nguyên tố
TH2: x >= 2 => n4 \(\equiv\)1 (mod 5)
=> n4 + 4 \(⋮\)5 (ko là số nguyên tố)
a, \(A=\frac{n-4}{n-3}\) là phân số <=> \(n-3\ne0\)
<=> \(n\ne3\)
b, \(A=\frac{n-4}{n-3}\inℤ\Leftrightarrow n-4⋮n-3\)
\(\Rightarrow n-4⋮n-3\)
\(\Rightarrow n-3-1⋮n-3\)
\(n-3⋮n-3\)
\(\Rightarrow1⋮n-3\)
\(\Rightarrow n-3\inƯ\left(1\right)\)
\(\Rightarrow n-3\in\left\{-1;1\right\}\)
\(\Rightarrow n-3\in\left\{2;4\right\}\)
c, \(A=\frac{n-4}{n-3}=\frac{n-3-1}{n-3}=\frac{n-3}{n-3}-\frac{1}{n-3}=1-\frac{1}{n-3}\)
để A đạt giá trị nỏ nhất thì \(\frac{1}{n-3}\) lớn nhất
=> n - 3 là số nguyên dương nhỏ nhất
=> n - 3 = 1
=> n = 4
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
1. A = \(\dfrac{3n-7}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{-7}{n-1}=3+\dfrac{-7}{n-1}\)
Tại giá trị \(A\notin Z,3\in Z\)\(\Rightarrow\dfrac{-7}{n-1}\in Z\)\(\Rightarrow n-1\inƯ\left(-7\right)\) với \(x\ne1\) (mẫu sẽ có giá trị là 0 nếu x = 1)
Tại \(n-1=7\)\(\Leftrightarrow n=7+1=8\)
Tại \(n-1=-7\Leftrightarrow n=-7+1=-6\)
Tại \(n-1=1\Leftrightarrow n=1+1=2\)
Tại \(n-1=-1\Leftrightarrow n=-1+1=0\)
2. B = \(\dfrac{4n+1}{2n-3}=\dfrac{4n+6}{2n-3}+\dfrac{-5}{2n-3}=2+\dfrac{-5}{2n-3}\)
Tại giá trị \(B\in Z,2\in Z\)\(\Rightarrow\dfrac{-5}{2n-3}\in Z\)\(\Rightarrow2n-3\inƯ\left(-5\right)\) với \(x\ne\dfrac{3}{2}\)
Tại \(2n-3=5\Leftrightarrow2n=8\Leftrightarrow n=4\)
Tại \(2n-3=-5\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
Tại \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)
Tại \(2n-3=-1\Leftrightarrow2n=2\Leftrightarrow n=1\)
\(A=\dfrac{6n+3-2}{2n+1}=3-\dfrac{2}{2n+1}\)
Để A max thì 2/2n+1 min
mà n nguyên
nên 2n+1=-1
=>2n=-2
=>n=-1
Câu 1:
Ta sẽ chỉ ra rằng một số lập phương \(a^3\) chia 7 chỉ có thể có dư là 0,1,6
Thật vậy:
Nếu \(a\equiv 0\pmod 7\Rightarrow a^3\equiv 0\pmod 7\)
Nếu \(a\equiv 1\pmod 7\Rightarrow a^3\equiv 1\pmod 7\)
Nếu \(a\equiv 2\mod 7\Rightarrow a^3\equiv 2^3\equiv 1\pmod 7\)
Nếu \(a\equiv 3\pmod 7\Rightarrow a^3\equiv 3^3\equiv 6\pmod 7\)
Nếu \(a\equiv 4\pmod 7\Rightarrow a^3\equiv 4^3\equiv 1\pmod 7\)
Nếu \(a\equiv 5\pmod 7\Rightarrow a^3\equiv 5^3\equiv 6\pmod 7\)
Nếu \(a\equiv 6\pmod 7\Rightarrow a^3\equiv 6^3\equiv (-1)^3\equiv 6\pmod 7\)
Do đó một số lập phương chia cho 7 luôn có dư là 0,1,6
Mà \(2016n+3=7.288n+3\) chia 7 dư 3
Do đó A không thể là số lập phương với mọi n
Vậy không tồn tại n thỏa mãn.
Bài 2:
Không mất tính tổng quát giả sử \(a\geq b\geq c\)
Để A là số nguyên thì \((ab-1)(bc-1)(ca-1)\vdots abc\)
\(\Leftrightarrow (ab^2c-ab-bc+1)(ac-1)\vdots abc\)
\(\Leftrightarrow a^2b^2c^2-abc(a+b+c)+ab+bc+ac-1\vdots abc\)
\(\Leftrightarrow ab+bc+ac-1\vdots abc\)
Đặt \(ab+bc+ac-1=kabc\Rightarrow k=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{abc}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq 1+1+1\)
\(\Leftrightarrow k< 3\Rightarrow k\in\left\{1;2\right\}\)
TH1 : $k=1$
Thay vào : \(ab+bc+ac-1=abc\Leftrightarrow 1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{abc}\)
Theo giả sử suy ra \(\frac{1}{a}\leq \frac{1}{b}\leq \frac{1}{c}\)
\(\Rightarrow 1\leq \frac{3}{c}-\frac{1}{abc}< \frac{3}{c}\Rightarrow c<3 \Rightarrow c\in\left\{1;2\right\}\)
+) \(c=1\Rightarrow ab+a+b-1=ab\Leftrightarrow a+b=1\) (vô lý vì \(a\geq b\geq 1\) )
+) \(c=2\Rightarrow ab+2a+2b-1=2ab\Leftrightarrow 2a+2b-1=ab\)
\(\Leftrightarrow (a-2)(b-2)=3\) (1)
Vì \(a\geq b\geq c\geq 2\Rightarrow a-2\geq b-2\geq 0\) (2)
(1),(2) suy ra \(\left\{\begin{matrix} a-2=3\\ b-2=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=5\\ b=3\end{matrix}\right.\)(thỏa mãn)
TH2: $k=2$
Thay vào: \(ab+bc+ac-1=2abc\Leftrightarrow 2=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{abc}\)
\(\Rightarrow 2\leq \frac{3}{c}-\frac{1}{abc}< \frac{3}{c}\Rightarrow c< \frac{3}{2}\)
Do đó \(c=1\Rightarrow ab+a+b-1=2ab\)
\(\Leftrightarrow a+b-1=ab\Leftrightarrow (a-1)(b-1)=0\)
+) Nếu \(a=1\Rightarrow b\leq a=1\Rightarrow b=1\)
+) Nếu $b=1$ thì $a$ là số tự nhiên tùy ý lớn hơn hoặc bằng 1
Vậy \((a,b,c)=(5;3;2)\) và hoán vị, hoặc \((a,b,c)=(k,1,1)\) và hoán vị với \(k\in\mathbb{N}^*\) tùy ý.