Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)
=>2n+1 thuộc {1,3,7,21}
2n+1 | 1 | 3 | 7 | 21 |
n | 0 | 1 | 3 | 10 |
Vậy n thuộc{0,1,3,10}
a: \(\Leftrightarrow n+2+5⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-1;-3;3;-7\right\}\)
b: \(\Leftrightarrow n-3-6⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{4;2;5;1;6;0;9;-3\right\}\)
c: \(\Leftrightarrow17⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{0;-2;16;-18\right\}\)
a) n + 5 ⋮ n - 2
n - 2 + 7 ⋮ n - 2
Vì n - 2 ⋮ n - 2
=> 7 ⋮ n - 2
=> n - 2 thuộc Ư(7) = { 1; -1; 7; -7 }
=> n thuộc { 3; 1; 9; -5 }
Vậy..........
b) 2n + 1 ⋮ n - 5
2n - 10 + 11 ⋮ n - 5
2( n - 5 ) + 11 ⋮ n - 5
Vì 2( n - 5 ) ⋮ n - 5
=> 11 ⋮ n - 5
=> n - 5 thuộc Ư(11) = { 1; -1; 11; -11 }
=> n thuộc { 6; 4; 16; -6 }
Vậy...........