Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.=\(\frac{7x+2}{3xy^2}.\frac{x^2y}{14x+4}\)
=\(\frac{7x+2}{3y}.\frac{x^2y}{2\left(7x+2\right)}\)
=\(\frac{1}{3y}.\frac{x}{2}\)
=\(\frac{x}{6y}\)
b.=\(\frac{8xy}{3x-1}.\frac{5-15x}{12xy^3}\)
=\(\frac{2}{3x-1}.\frac{-15x+5}{3y^2}\)
=\(\frac{2}{3x-1}.\frac{-5\left(3x-1\right)}{3y^2}\)
=\(\frac{-10}{3y^2}\)
c.=\(\frac{3\left(x^3+1\right)}{x-1}.\frac{1}{x^2-x+1}\)
=\(\frac{3\left(x+1\right).\left(x^2-x+1\right)}{x-1}.\frac{1}{x^2-x+1}\)
=\(\frac{3x+3}{x-1}\)
d.=\(\frac{4\left(x+3\right)}{.\left(3x-1\right)}.\frac{1-3x}{x^2+3x}\)
=\(\frac{4\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x\left(x+3\right)}\)
=\(\frac{-4}{x^2}\)
e.=\(\frac{2\left(2x+3y\right)}{x-1}.\frac{1-x^3}{4x^2+12xy+9y^2}\)
=\(2.\frac{-\left(1+x+x^2\right)}{2x+3y}\)
=\(-\frac{2x^2+2x+2}{2x+3y}\)
b) B= 5x2 -10x+3-2
B = (5x2 - 2.5.1 . 12)-2
B = (5x-1)2-2
ta có :
(5x-1)2 > 0 với mọi x thuộc R
(5x-1)2 -2 < -2
vậy B < -2
dấu = xảy ra <=> x = 1/5
mai tui lm nốt choa
a)
\(A=4x^2-4x-1=4x^2-4x+1-2=\left(2x-1\right)^2-2\)
\(A\ge-2\forall x\in R\)
Dấu "=" xảy ra <=>\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy Amin =-2 tại x=1/2
a) \(4\left(x-3\right)^2=9\left(2-3x\right)^2\)
\(\Leftrightarrow\left(2x-6\right)^2=\left(6-9x\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=6-9x\\2x-6=9x-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}11x=12\\7x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{12}{11}\\x=0\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{12}{11};0\right\}\)
b) \(ĐKXĐ:x\ne\pm1\)
\(\frac{x+1}{x-1}+\frac{x^2+3x-2}{1-x^2}=\frac{x-1}{x+1}\)
\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x^2+3x-2}{x^2-1}-\frac{x-1}{x+1}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2-x^2-3x+2-\left(x-1\right)^2}{x^2-1}=0\)
\(\Leftrightarrow\frac{x^2+2x+1-x^2-3x+2-x^2+2x-1}{x^2-1}=0\)
\(\Leftrightarrow-x^2+x+2=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
2)
a) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy x=0 ; x=-1 ; x=1
b) \(x^2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
1)
a) \(\left(x-2\right)\left(x^2+3x+4\right)\)
\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)
\(\Leftrightarrow x^3+x^2-2x-8\)
b) \(\left(x-2\right)\left(x-x^2+4\right)\)
\(=x^2-x^3+4x-2x+2x^2-8\)
\(=3x^2-x^3+2x-8\)
c) \(\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)
\(=17x^2+5x-6-6x^3\)
a) x vô nghiệm
b)<=>(x2-3x+3)(x2-2x+3)-2x2=(x-3)(x-1)(x2-x+3)
=>(x-3)(x-1)(x2-x+3)=0
TH1:x-3=0
=>X=3
TH2:x-1=0
=>x=1
TH3:x2-x+3=0
<=>(-1)2-4(1.3)=-11
vì -11<0
=>x=1 hoặc 3
bạn tự tiếp làm đi dễ mà
Lời giải:
a)
\(A=4x^2-4x+1=2x(2x-3)+2x+1=2x(2x-3)+(2x-3)+4\)
\(=(2x+1)(2x-3)+4\)
Với \(x\geq \frac{3}{2}\Rightarrow \left\{\begin{matrix} 2x+1>0\\ 2x-3\geq 0\end{matrix}\right.\Rightarrow A=(2x+1)(2x-3)+4\geq 4\)
Vậy GTNN của $A$ là $4$ khi $x=\frac{3}{2}$
b)
\(B=5x^2-10x+3=5(x^2-2x+1)-2\)
\(=5(x-1)^2-2\)
Ta thấy \((x-1)^2\geq 0, \forall x\geq 1\Rightarrow B=5(x-1)^2-2\geq -2\)
Vậy GTNN của $B$ là $-2$ khi $(x-1)^2=0\Leftrightarrow x=1$
c)
\(C=4x^2-6x+2=(2x)^2-2.2x.\frac{3}{2}+(\frac{3}{2})^2-\frac{1}{4}\)
\(=(2x-\frac{3}{2})^2-\frac{1}{4}\)
Ta thấy \((2x-\frac{3}{2})^2\geq 0, \forall x\geq 0\Rightarrow C=(2x-\frac{3}{2})^2-\frac{1}{4}\geq -\frac{1}{4}\)
Vậy GTNN của $C$ là $\frac{-1}{4}$ khi \((2x-\frac{3}{2})^2=0\Leftrightarrow x=\frac{3}{4}\)
d)
\(D=3x^2+2x+1=3(x^2+\frac{2}{3}x+\frac{1}{9})+\frac{2}{3}\)
\(=3(x+\frac{1}{3})^2+\frac{2}{3}\)
Ta thấy \((x+\frac{1}{3})^2\geq 0, \forall x\geq -1\Rightarrow D=3(x+\frac{1}{3})^2+\frac{2}{3}\geq \frac{2}{3}\)
Vậy GTNN của $D$ là $\frac{2}{3}$ khi $(x+\frac{1}{3})^2=0\Leftrightarrow x=-\frac{1}{3}$
a) \(B=\frac{3x^2+6x+10}{x^2+2x+5}\)
\(\Leftrightarrow B=3-\frac{5}{x^2+2x+5}\)
\(\Leftrightarrow B=3-\frac{5}{5\left(\frac{x^2}{5}+\frac{2x}{5}+\frac{5}{5}\right)}\Leftrightarrow B=3-\frac{1}{\frac{\left(x^2+2x+1\right)}{5}+\frac{4}{5}}\)( cho \(\left(x+1\right)^2=0\))
\(\Leftrightarrow maxB=3-\frac{1}{\frac{4}{5}}=\frac{7}{4}\) KHI X= -1
c) \(D=x^2-2x+y^2+4y+7\)
\(\Leftrightarrow D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2\)
\(\Leftrightarrow D=\left(x-1\right)^2+\left(y+2\right)^2+2\)
\(\Leftrightarrow minD=2\)KHI X= 1 và Y= -2
e) Câu này đề có vẻ sai bạn kiểm tra lại giúp mk ! mk làm theo đề đúng nka !
\(E=\frac{x^2-4x+1}{x^2}\)
\(\Leftrightarrow E=\frac{x^2\left(1-\frac{4}{x}+\frac{1}{x^2}\right)}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)
ĐẶT \(y=\frac{1}{x}\)\(\Leftrightarrow minE=-3\)KHI X = 1/2
Hai câu còn lại tối mk giải tiếp mk bận đi học rùi bạn thông cảm
1) A = 3 - 4x2 - 4x = - (4x2 + 4x +1) + 4 = - (2x+1)2 + 4
Vì - (2x+1)2 \(\le\)0 nên A = - (2x+1)2 + 4 \(\le\) 4 vậy maxA = 4 khi 2x+1 = 0 => x = -1/2
b) ta có x2 + 6x + 11 = x2 + 2.3x + 9 + 2 = (x+3)2 + 2 \(\ge\) 0 + 4 = 4
=> \(B=\frac{1}{x^2+6x+11}\le\frac{1}{4}\) vậy maxB = 1/4 khi x = -3
2) a) 3x2 - 3x + 1 = 3.(x2 - x) + 1 = 3.(x2 - 2.x\(\frac{1}{2}\) + \(\frac{1}{4}\)) + \(\frac{1}{4}\) = 3.(x - \(\frac{1}{2}\) )2 + \(\frac{1}{4}\) \(\ge\)0 + \(\frac{1}{4}\)= \(\frac{1}{4}\)
vậy min(3x2 - 3x + 1) = 1/4 khi x = 1/2
b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a - b|. dấu = khi a.b < 0
ta có: |3x - 3| + |3x - 5| \(\ge\) |3x - 3 - (3x - 5)| = |2| = 2
vậy min = 2 khi (3x - 3)(3x - 5) < 0 hay 1< x < 5/3