Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
a,
Ta có:
|x-2,1|=3/2
TH1: x-2,1=3/2
=> x=-3/5
TH2: 2,1-x=3/2
=> x=3/5
b, (x + 5) . (2x - 3) = 0
=> \(\orbr{\begin{cases}x+5=0\\2x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{3}{2}\end{cases}}\)
2,
a, A = 2 . | 2 - 5x | - 4/6
b, B = | x - 1/2 | + | y - 3/4 | - 1,5
Giải:
a,
Ta có: \(\left|\text{ 2-5x}\right|\ge0\Rightarrow2.\left|2-5x\right|\ge0\)
\(\Rightarrow2.\left|2-5x\right|-\frac{4}{6}\ge-\frac{4}{6}\)
Dấu '=' xảy ra khi 2.|2-5x|=0
=> \(x=\frac{2}{5}\)
Min A=-4/6 khi và chỉ khi x=2/5
b, B = | x - 1/2 | + | y - 3/4 | - 1,5
Tương tự Min B= -1,5 khi và chỉ khi x=... y=... tự giải
Câu 3:
a,
Ta có:
\(\frac{1}{2}.\left|5-x\right|\ge0\)
=> \(7-\frac{1}{2}\left|5-x\right|\le7\)
Dấu '=' xảy ra khi
|5-x|=0
=> x=5
câu b tương tự
bn ơi
bn nên đợi 1
năm nữa mình tra
lời cho còn
bây giờ mình mới học lớp 6
a) Ta có: \(\text{|}5x-2\text{|}\ge0\)
=> \(2\text{|}5x-2\text{|}\ge2.0=0\)
=> \(2\text{|}5x-2\text{|}+4\ge0+4=4\)
Vậy Min(2|5x-2|+4)=4 khi x=\(\frac{2}{5}\)
b) Ta có: \(x^2\ge0\) và \(|y-3|\ge0\)=> \(3|y-3|+5\ge3.0+5=5\)
=> \(x^2+3|y-3|+5\ge0+5=5\)
Vậy Min(x2+3|y-3|+5)=5 khi x =0 và y=3
c) Ta có: |x-1|=|1-x| (Vì hai số x-1 và 1-x là hai số đối nhau, mà giá trị tuyệt đối của hai số đối nhau luôn bằng nhau)
=> |x-1|+|x-2016|=|1-x|+|x-2016|
Ta có: \(\text{|}1-x\text{|}+\text{|}x-2016\text{|}\ge\text{|}1-x+x-2016\text{|}=\text{|}-2015\text{|}=2015\)
Vậy Min(|x-1|+|x-2016|)=2015
Mấy cái này không tìm được giá trị lớn nhất nha bạn
Nó thu gon mất cái đề nên mình không thấy được mấy cái đề sau. 3 câu d, e, f bạn lập bản biến thiên ra mà làm
b. + Vì \(|6-2x|\ge0\)\(\forall x\)
\(\Rightarrow\)\(|6-2x|-5\ge0-5\)\(\forall x\)
\(\Rightarrow\)B\(\ge\)-5 \(\forall x\)
Vậy GTNN của B= -5 \(\Leftrightarrow\)6-2x=0
\(\Leftrightarrow\)2x=6
\(\Leftrightarrow\)x=3
+ Vì -\(|6-2x|\le0\forall x\)
\(\Rightarrow\)\(|6-2x|-5\le0+5\forall x\)
\(\Rightarrow B\le5\forall x\)
Vậy GTLN của B= 5 \(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
c,+ Vì \(|x+1|\ge0\forall x\)
\(\Rightarrow\)\(3-|x+1|\ge3-0\forall x\)
\(\Rightarrow C\ge3\forall x\)
Vậy GTNN của C=3 \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
+ Vì \(-|x+1|\le0\forall x\)
\(\Rightarrow3-|x+1|\le3+0\forall x\)
\(\Rightarrow C\le3\forall x\)
Vậy GTLN của \(C=3\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Mình chỉ làm vậy thôi nhé!