Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
Giải:
Ta có:
\(n+1⋮2n-3\)
\(\Rightarrow2\left(n+1\right)⋮2n-3\)
\(\Rightarrow2n+2⋮2n-3\)
\(\Rightarrow\left(2n-3\right)+5⋮2n-3\)
\(\Rightarrow5⋮2n-3\)
\(\Rightarrow2n-3\in\left\{1;5\right\}\)
+) \(2n-3=1\Rightarrow n=2\)
+) \(2n-3=5\Rightarrow n=4\)
Vậy \(n\in\left\{2;4\right\}\)
*Lưu ý: còn trường hợp n = 1 nữa nhưng khi đó tỉ 2n - 3 = -1. Bạn lấy số đó thì thay vào.
1)Ta có:[a,b].(a,b)=a.b
120.(a,b)=2400
(a,b)=20
Đặt a=20k,b=20m(ƯCLN(k,m)=1,\(k,m\in N\))
\(\Rightarrow20k\cdot20m=2400\)
\(400\cdot k\cdot m=2400\)
\(k\cdot m=6\)
Mà ƯCLN(k,m)=1,\(k,m\in N\)
Ta có bảng giá trị sau:
k | 2 | 3 | 1 | 6 |
m | 3 | 2 | 6 | 1 |
a | 40 | 60 | 20 | 120 |
b | 60 | 40 | 120 | 20 |
Mà a,b là SNT\(\Rightarrow\)a,b không tìm được
2)Mình nghĩ đề đúng là cho 2a+3b chia hết cho 15
Ta có:\(2a+3b⋮15\Rightarrow3\left(2a+3b\right)⋮15\Rightarrow6a+9b⋮15\)
Ta có:\(9a+6b+6a+9b=15a+15b=15\left(a+b\right)⋮15\)
Mà \(6a+9b⋮15\Rightarrow9a+6b⋮15\left(đpcm\right)\)
a) Có: \(29⋮n\)
\(\Rightarrow n\inƯ\left(29\right)=\left\{\pm1;\pm29\right\}\)
Vậy \(n\in\left\{\pm1;\pm29\right\}\).
b) Có: \(18⋮n-2\)
\(\Rightarrow n-2\inƯ\left(18\right)=\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)
\(\Rightarrow n\in\left\{3;1;4;0;5;-1;8;-4;11;-7;20;-16\right\}\)
Vậy \(n\in\left\{3;1;4;0;5;-1;8;-4;11;-7;20;-16\right\}\)
c) Có: \(n+3⋮n+1\)
\(\Rightarrow n+1+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3\right\}\)
Vậy \(n\in\left\{0;-2;1;-3\right\}\).
d) Có: \(2n+3⋮2n+1\)
\(\Rightarrow2n+1+2⋮2n+1\)
\(\Rightarrow2⋮2n+1\)
Mà 2n+1 là số nguyên lẻ nên \(2n+1=\pm1\)
\(\Rightarrow n\in\left\{0;-1\right\}\)
Vậy \(n\in\left\{0;-1\right\}.\)
a) 29 chia hết cho
=> n thuộc Ư(29)
Mà Ư(29) = 1 ; 29
Vậy n = 1 ; 29
c)n+3 chia hết cho n+1
= (n+1) + 2 chia hết cho n +1
Bỏ n+1 vì n+1 chia hết cho n+1
Có : 2 chia hết cho n+1
=> n+1 là Ư(2)
Ư(2) = 1 ; 2
=> n = 2-1 ; 1-1
=> n = 1 ; 0
d)2n+3 chia hết cho 2n-1
Bỏ 2 vì 2 chia hết cho 2
Có : n+3 chia hết cho n + 1
(n+1) + 2 chia hết cho n +1
Bỏ n+1 vì n+1 chia hết cho n+1
Có : 2 chia hết cho n+1 => n+1 là Ư(2)
Ư(2) = 1 ; 2
n = 2-1 ; 1-1
n = 1 ; 0
a) n+3 chia hết cho n-2
=>n-2+5 chia hết cho n-2
=> 5 chia hết cho n-2
U(5)=1;5
=>n=3;7
Ta có: n + 3 chia hết cho n - 2
<=> n - 2 + 5 chia hết n - 2
=> 5 chia hết n - 2
=> n - 2 thuộc Ư(5) = {-1;1;-5;5}
=> n = {1;3;-3;7}
2n + 20 chia hết cho n + 3
⇒ 2n + 6 + 14 chia hết cho n + 3
⇒ 2(n + 3) + 14 chia hết cho n + 3
⇒ 14 chia hết cho n + 3
⇒ n + 3 ∈ Ư(14) = {1; -1; 2; -2; 7; -7; 14; -14}
⇒ n ∈ {-2; -4; -1; -5; 4; -10; 11; -17}
Mà: n < 6
⇒ n ∈ {-2; -4; -1; -5; 4; -10; -17}
(2n + 20) chia hết cho (n + 3)
Ta có: (n + 3) ⋮ (n + 3)
2(n + 3) ⋮ (n + 3)
(2n + 6) ⋮ (n + 3)
(2n + 20) - (2n + 6) ⋮ (n + 3)
(2n + 20 - 2n - 6) ⋮ (n + 3)
14 ⋮ (n + 3)
=> (n + 3) ϵ Ư(14) = {1;2;7;14}
=> n ϵ {4;11}
Vì n<6 nên n = 4
Vậy n = 4