K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 7 2023

Lời giải:

PT $\Leftrightarrow x^3+x+1-y(x^2-3)=0$

$\Leftrightarrow y=\frac{x^3+x+1}{x^2-3}$ (hiển nhiên $x^2-3\neq 0$ với mọi $x$ nguyên) 

Để $y$ nguyên thì $\frac{x^3+x+1}{x^2-3}$ nguyên 

$\Leftrightarrow x^3+x+1\vdots x^2-3$
$\Rightarrow x(x^2-3)+4x+1\vdots x^2-3$
$\Rightarrow 4x+1\vdots x^2-3$

Hiển nhiên $4x+1\neq 0$ nên $|4x+1|\geq x^2-3$
Nếu $x\geq \frac{-1}{4}$ thì $4x+1\geq x^2-3$
$\Leftrightarrow x^2-4x-4\leq 0$

$\Leftrightarrow (x-2)^2\leq 8<9$

$\Rightarrow -3< x-2< 3$

$\Rightarrow -1< x< 5$

$\Rightarrow x\in \left\{0; 1; 2; 3; 4\right\}$.

Nếu $x< \frac{-1}{4}$ thì $-4x-1\geq x^2-3$

$\Leftrightarrow x^2+4x-2\leq 0$

$\Leftrightarrow (x+2)^2-6\leq 0$

$\Leftrightarrow (x+2)^2\leq 6< 9$

$\Rightarrow -3< x+2< 3$
$\Rightarrow -5< x< 1$

$\Rightarrow x\in\left\{-4; -3; -2; -1\right\}$

Đến đây bạn thay vào tìm $y$ thôi

Ta có: \(\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)

\(=\left[x^2\left(x-y\right)+y^2\left(x-y\right)\right]\left(x+y\right)\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=x^4-y^4=2^4-\left(\dfrac{1}{2}\right)^4=16-\dfrac{1}{16}=\dfrac{255}{16}\)

26 tháng 11 2023

x²y + xy² - x - y

= (x²y + xy²) - (x + y)

= xy(x + y) - (x + y)

= (x + y)(xy - 1)

14 tháng 9 2021

c)\(\left(xy^2-1\right)\left(x^2y+5\right)\)

\(=x^3y^3+5xy^2-x^2y-5\)

d)\(4\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)\left(4x^2+1\right)\)

\(=4\left(x^2-\dfrac{1}{4}\right)\left(4x^2+1\right)\)

\(=4\left(4x^4+x^2-x-\dfrac{1}{4}\right)\)

\(=16x^4+4x^2-4x-1\)

14 tháng 9 2021

Bài 9

a)\(\left(x+3\right)\left(x+4\right)\)                               b)\(\left(x-4\right)\left(x^2+4x+16\right)\)

\(=x^2+4x+3x+12\)                         \(=\left(x-4\right)\left(x^2+x.4+4^2\right)\)

\(=x^2+7x+12\)                                  \(=x^3-4^3=x^3-64\)

3 tháng 11 2021

nhanh giúp e với

 

7 tháng 4 2018

Giả sử \(A=1+x+y⋮p\)

Ta có: 

\(p=q.B\)(với q là số nguyên tố)

\(\Rightarrow1+x+y⋮q\)

Mà ta lại có:

\(\Rightarrow\hept{\begin{cases}x^{2016}⋮p\\y^{2017}⋮p\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x^{2016}⋮q\\y^{2017}⋮q\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x⋮q\\y⋮q\end{cases}}\)

\(\Rightarrow1+x+y⋮̸q\)

Mâu thuẫn giả thuyết. Vậy \(A⋮̸p\)