K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

Bài 1:

Áp dụng TCDTSBN có:

\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1-1+a2-2+...+a9-9}{9+8+...+1}=\frac{\left(a1+...+a9\right)-\left(1+2+...+9\right)}{45}=\frac{90-45}{45}=1\)

\(\Rightarrow\frac{a1-1}{9}=1\Rightarrow a1=10\)

\(\frac{a2-2}{8}=1\Rightarrow a2=10\)

.....

\(\frac{a9-9}{1}=1\Rightarrow a9=10\)

Vậy a1=a2=...=a9=10

2,

a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\Rightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)

=> x=6, y=8, z=10

b, \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{5z-25-3x+3-4y-12}{30-6-16}=\frac{\left(5x-3x-4y\right)-\left(25-3+12\right)}{8}=\frac{50-34}{8}=2\)

=> x-1/2 = 2 => x=5

y+3/4=2=>y=5

z-5/6=2=>z=17

2 tháng 9 2017

Bài 1 : Giải

a1−19=a2−28=a3−37=...=a9−91a1−19=a2−28=a3−37=...=a9−91
Theo tính chất dãy tỉ số bằng nhau →a1−19=a2−28=a3−37=...=a9−91=a1−1+a2−2+a3−3+a4−4+...+a9−99+8+7+...+3+2+1=(a1+a2+a3+...+a9)−4545=90−4545=1→a1−19=a2−28=a3−37=...=a9−91=a1−1+a2−2+a3−3+a4−4+...+a9−99+8+7+...+3+2+1=(a1+a2+a3+...+a9)−4545=90−4545=1
a1−1=9→a1=10a2−2=8→a2=10a3−3=7→a3=10...a9−9=1→a9=10a1−1=9→a1=10a2−2=8→a2=10a3−3=7→a3=10...a9−9=1→a9=10
Vậy a1=a2=a3=...=a9=10

26 tháng 12 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1-1+a2-2+...+a2-9}{1+2+...+9}\)

\(=\frac{\left(a1+a2+...+a9\right)-\left(1+2+...+9\right)}{45}=\frac{90-45}{45}=1\)

\(\Rightarrow\frac{a1-1}{9}=1\Rightarrow a1-1=9\Rightarrow a1=10\)

\(\Rightarrow\frac{a2-2}{8}=1\Rightarrow a2-2=8\Rightarrow a2=10\)

\(.....\)

\(\Rightarrow\frac{a9-9}{1}=1\Rightarrow a9-9=1\Rightarrow a9=10\)

Vậy \(a1=a2=...=a9=10\)

26 tháng 12 2018

Ta có : \(\frac{a1-1}{9}=\frac{a2-2}{8}=\frac{a3-3}{7}=...=\frac{a9-9}{1}\)

19 tháng 7 2016

mày nói từng số ra coi

5 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau:

 \(\frac{a_1-1}{9}=\frac{a_2-2}{8}=....=\frac{a_9-9}{1}=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{9+8+...+1}\)

                                                         \(=\frac{90-45}{45}\)\(=1\)

\(\Rightarrow a_1-1=1.9,,a_2-2=1.8,,.....,,a_9-9=1.1\)     

\(\Rightarrow a_1=a_2=...=a_9=10\)

30 tháng 10 2016

Bạn áp dụng tính chất của dãy tỉ số bằng nhau để cộng các tử,mẫu của gt thì được\(\frac{45}{45}=1\)

Từ đó có a1 - 1 = 9 ; a2 - 2 = 8 ; ... ; a9 - 9 = 1 => a1 = a2 = a3 =... = a9 = 10

Ko hiểu thì hỏi mình nhé !

2 tháng 6 2018

tìm các số a1,a2,a3,....,a9 biết: a1−1/9 =a2−2/8 =......=a9−9/1  và a1+a2+....+a9=90

11 tháng 10 2017

\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\)

\(=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)\(=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{45}\)\(=\frac{90-45}{45}=1\)

Do dó, suy ra:\(\frac{a_1-1}{9}=1\Rightarrow a_1=10\)

                    \(\frac{a_2-2}{8}=1\Rightarrow a_2=10\)

                           \(...\)

                    \(\frac{a_9-9}{1}=1\Rightarrow a_9=10\)

Vậy \(a_1=a_2=...=a_9=10\)

14 tháng 10 2018

đố lè ,cầu gì cao nhất ?

14 tháng 10 2018

ảnh trên mạng ak ✿ Hương ➻❥