K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

1) =0

3)=(37988-1)/2

23 tháng 1 2016

3) Q=(3+1)(3^2+1)(3^4+1)....(3^3994+1)

=(3-1)(3+1)(3^2+1)(3^4+1)...(3^3994+1)

=(3^2-1)(3^2+1)(3^4+1)...(3^3994+1)

=(3^4-1)(3^4+1)...(3^3994+1)

=.........

=(3^3994-1)(3^3994+1)

=3^7988-1

22 tháng 11 2017

giup minh voi cac ban

27 tháng 12 2015

mình chẳng hiểu  gì cả

27 tháng 12 2015

Bài 3:

Ta có:

\(81^8-1=\left(9^2\right)^8-1=\left[\left(3^2\right)^2\right]^8-1=3^{32}-1\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

Do đó: 

\(A=3^4-1=80\)

1 tháng 10 2017

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

25 tháng 10 2016

ko biert lam kho qua

16 tháng 12 2015

\(25x^2+16y^2=50xy\)

\(\Leftrightarrow\) \(\left(5x+4y\right)^2-40xy=50xy\)

\(\Leftrightarrow\) \(\left(5x+4y\right)^2=90xy\)

Mặt khác, ta cũng có:  \(25x^2+16y^2=50xy\)

\(\Leftrightarrow\)  \(\left(5x-4y\right)^2=10xy\)

Do đó:

\(P^2=\frac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}=\frac{10xy}{90xy}=\frac{1}{9}\)

Vậy,  \(P'=\frac{1+\frac{1}{9}}{1-\frac{1}{9}}=1\frac{1}{4}\)

16 tháng 12 2015

1)

 \(25x^2-40xy+16y^2=10xy\Leftrightarrow\left(5x-4y\right)^2=10xy\)

\(25x^2+40xy+16y^2=10xy\Leftrightarrow\left(5x+4y\right)^2=90xy\)

\(P^2=\frac{1}{9}\Leftrightarrow Q=\frac{1+P^2}{1-P^2}=\frac{1+\frac{1}{81}}{1-\frac{1}{81}}=\frac{82}{80}=\frac{41}{40}\)

3 tháng 8 2015

nhỉn vào dễ thấy

mẫu chung là (4-x2)x

lấy BT chia cho mẫu ở trên (bằng máy)

ra 4x2-8x

đến đây dễ rồi