Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ vuông ANC và ∆ vuông AMB ta có :
AB = AC ( ∆ABC đều)
A chung
=> ∆ANC = ∆AMB (ch-gn)
=> AN = AM
=> ∆AMN cân tại A
=> ANM = \(\frac{180°-BAC}{2}\)= \(\frac{180°-60°}{2}\)=\(60°\)
Mà ∆ABC đều
=> ABC = 60°
=> ABC = ANM = 60°
Mà 2 góc này ở vị trí đồng vị
=> NM//BC
=> NMCB là hình thang
Mà ∆ABC đều
=> BAC = ABC = ACB
=> NMCB là hình thang cân
b) Vì chu vi ∆ABC = 24dm
=> AB = AC = BC = 8cm
Vì ∆AMN cân tại A (cmt)
=> ∆AMN đều
=> MN = AM = AN
Mà BN là đường cao ∆ đều ABC
=> BN đồng thời là trung tuyến ∆ABC
=> AN = \(\frac{1}{2}Ac\)
=> MN = AN = \(\frac{1}{2}AC\:=\:\frac{8}{2}=4=NC\)
Vì BMNC là hình thang cân
=> BM = NC = AN = 4dm
Chu vi hình thang BMNC là :
4 + 4 + 4 + 8 = 20dm
a. trong tam giác đều đường cao cũng là đường trung tuyến nen:
M;N lần lượt là trung điểm của ac và ab
+
=> AM LÀ dường trung bình của tam giác abc
=>AM//BC hay MNBC là hình thang 1
Do AB là tam giác đều nên BN=CM 2
TỪ 1 và 2 suy ra MNBC LÀ HÌNH THANG CÂN ( đpcm)
b.
do tam giác ABC dều nên AB=BC=AC=24:3=8 dm
=> MN=4 ; MB=4; NC=4
CHU VI HÌNH THANG LÀ:
4+4+4+8=20(dm)
bạn lên đây nè
https://vi.wikipedia.org/wiki/Tam_gi%C3%A1c_%C4%91%E1%BB%81u
đặt AB=3k,AC=4k,BC=5k (bộ ba Pitago)
cm tam giác AHB đồng dạng tam giác CAB (g-g)
ta có P AHB/P CAB=AB/BC=3k/5k=3/5 (tỉ số chu vi bằng tỉ số đồng dạng)
=> P BAC=(P AHB.5):3=(18.5):3=30cm
Xét △AHB và △CHA có:
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ \(\widehat{HAB}\))
=> △AHB đồng dạng với △CHA (g.g)
=> \(\frac{AH}{CH}=\frac{AB}{CA}=\frac{AH+AB+HB}{CH+CA+HA}=\frac{18}{24}=\frac{3}{4}\left(1\right)\)
Xét △AHB và △CAB ta có:
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{B}\)là góc chung
=> △AHB đồng dạng với △CAB (g.g)
=> \(\frac{AH}{CA}=\frac{AB}{CB}=\frac{AH+AB+HB}{CA+CB+AB}=\frac{18}{CA+CB+AB}\left(2\right)\)
Từ (1) ta đặt AB=3k, CA=4k. Xét △ABC vuông tại A
CB2=AB2+CA2=(3k)2+(4k)2=(5k)2
nên CB=5k. Do đó: \(\frac{AB}{CB}=\frac{3}{5}\)
Từ (2) => \(\frac{3}{5}=\frac{18}{P_{\text{△}ABC}}\)
Vậy \(P_{\text{△}ABC}=18\cdot\frac{5}{3}=30\left(cm\right)\)
Gọi \(P_1,P_2,P_3\) lần lượt là chu vi của tam giác \(AHB;AHC;ABC\) ;
\(\Delta AHB\infty\Delta CHA\)suy ra
\(\frac{P_1}{P_2}=\frac{AB}{CA}\) (1)
Từ (1) , ta có:
\(\frac{AB}{AC}=\frac{18}{24}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
\(\Leftrightarrow\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{BC^2}{5^2}\)
\(\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{BC}{5}\Rightarrow AB:AC:BC=3:4:5\)
\(P_1:P_2:P_3=AB:AC:BC=3:4:5\)
Vậy nếu \(P_1=18cm,\) ,\(P_2=24cm\) thì \(P_3=30cm\) .
Đường cao của tam giác đều là: \(\frac{a\sqrt{3}}{2}=3\) với a là cạnh của tam giác
=> Cạnh của tam giác đều là: \(a=3:\frac{\sqrt{3}}{2}=2\sqrt{3}\)(cm)
=> Chu vi là: \(2\sqrt{3}+2\sqrt{3}+2\sqrt{3}=6\sqrt{3}\left(cm\right)\)