K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2021

\(1) \sqrt{9a^2.b^2}\)=3ab

\(2) \sqrt{3a}.\sqrt{27a}=\sqrt{3a}.3\sqrt{3a}=9a\)

\(3) \sqrt{3a^5}.12a=12\sqrt{3a^7}\)

\(4) \sqrt{5a}.\sqrt{45a}-3a=15a-3a=12a\)

\(5) \sqrt{3+\sqrt{a}}.\sqrt{3-\sqrt{a}}=\sqrt{(3+\sqrt{a}).(3-\sqrt{a})} =\sqrt{9-a} \)

\(6) \sqrt{3+\sqrt{5}}.\sqrt{3\sqrt{5}} =\sqrt{\sqrt{3\sqrt{5}}.(3+\sqrt{5})} =\sqrt{9+\sqrt{15}}\)

 

1) \(\sqrt{9a^2b^2}=3ab\)

2) \(\sqrt{3a}\cdot\sqrt{27a}=9a\)

4) \(\sqrt{5a}\cdot\sqrt{45a}-3a=15a-3a=12a\)

a: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

b: \(\sqrt{\dfrac{2a}{3}}\cdot\sqrt{\dfrac{3a}{8}}=\sqrt{\dfrac{6a^2}{24}}=\sqrt{\dfrac{a^2}{4}}=\dfrac{a}{2}\)

c: \(\sqrt{5a\cdot45a}-3a=-15a-3a=-18a\)

8 tháng 11 2021

a) \(=5\left|a\right|+3a=5a+3a=8a\)

b) \(=3\left|a^2\right|+3a^2=3a^2+3a^2=6a^2\)

c) \(=5.2\left|a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)

8 tháng 11 2021

làm chi tiết cho em câu b đi ạ

b: B=căn 49a^2+3a

=|7a|+3a

=7a+3a(a>=0)

=10a

c: C=căn16a^4+6a^2

=4a^2+6a^2

=10a^2

d: \(D=3\cdot3\cdot\sqrt{a^6}-6a^3=6\cdot\left|a^3\right|-6a^3\)

TH1: a>=0

D=6a^3-6a^3=0

TH2: a<0

D=-6a^3-6a^3=-12a^3

e: \(E=3\sqrt{9a^6}-6a^3\)

\(=3\cdot\sqrt{\left(3a^3\right)^2}-6a^3\)

=3*3a^3-6a^3(a>=0)

=3a^3

f: \(F=\sqrt{16a^{10}}+6a^5\)

\(=\sqrt{\left(4a^5\right)^2}+6a^5\)

=-4a^5+6a^5(a<=0)

=2a^5

14 tháng 7 2018

a)  \(\sqrt{7+4\sqrt{3}}=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

    \(=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)

b)   \(\sqrt{13-4\sqrt{3}}=\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}+1}\)

       \(=\sqrt{\left(2\sqrt{3}-1\right)^2}=2\sqrt{3}-1\)

c)  \(\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)

     \(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)

d)  \(\sqrt{3+2\sqrt{2}+\sqrt{6-4\sqrt{2}}}\)

\(=\sqrt{3+2\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}}\)

\(=\sqrt{3+2\sqrt{2}+2-\sqrt{2}}\)

\(=\sqrt{5+\sqrt{2}}\)

e)  \(2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)

\(=2+\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}\)

\(=2+\sqrt{17-4\left(\sqrt{5}+2\right)}\)

\(=2+\sqrt{9-4\sqrt{5}}\)

\(=2+\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=2+\sqrt{5}-2=\sqrt{5}\)

f)   đề sai nhé:  

\(\sqrt{3a}.\sqrt{12a}=\sqrt{36a^2}=6a\)\(\left(a\ge0\right)\)

g)  \(\sqrt{16a^2b^8}=4b^4\left|a\right|\)

h)  \(\sqrt{7a}.\sqrt{63a^3}=\sqrt{441.a^4}=21a^2\)

a) Ta có: \(\sqrt{27\cdot48\left(1-a^2\right)}\)

\(=\sqrt{3^4\cdot4^2\cdot\left(1-a^2\right)}\)

\(=36\sqrt{1-a^2}\)

c) Ta có: \(\sqrt{5a}\cdot\sqrt{45a}-3a\)

\(=15a-3a=12a\)

b) Ta có: \(B=\dfrac{1}{a-b}\cdot\sqrt{a^4\cdot\left(a-b\right)^2}\)

\(=\dfrac{1}{a-b}\cdot a^2\cdot\left(a-b\right)\)

\(=a^2\)

d) Ta có: \(D=\left(3-a\right)^2-\sqrt{0.2}\cdot\sqrt{180a^2}\)

\(=a^2-6a+9-\sqrt{36a^2}\)

\(=a^2-6a+9-\left|6a\right|\)

\(=\left[{}\begin{matrix}a^2-6a+9-6a\left(a\ge0\right)\\a^2-6a+9+6a\left(a< 0\right)\end{matrix}\right.\)

\(=\left[{}\begin{matrix}a^2-12a+9\\a^2+9\end{matrix}\right.\)

15 tháng 6 2017

minh văn nguyễn

8 tháng 7 2023

a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)

b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)

c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)

 

15 tháng 4 2021

a, \(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\left|\frac{a}{2}\right|=\frac{a}{2}\)

do \(a\ge0\)

b, \(\sqrt{13a}.\sqrt{\frac{52}{a}}=\sqrt{\frac{676a}{a}}=\sqrt{676}=26\)

c, \(\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\left|15a\right|-3a\)

\(=15a-3a=12a\)do a > 0 

d, \(=\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)

\(=\left(3-a\right)^2-\sqrt{36a^2}=\left(3-a\right)^2-\left|6a\right|\)

Với \(a\ge0\Rightarrow\left(3-a\right)^2-6a=a^2-6a+9-6a=a^2-12a+9\)

Với \(a< 0\Rightarrow\left(3-a\right)^2+6a=a^2-6a+9+6a=a^2+9\)

15 tháng 4 2021

a) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Do a ≥ 0 nên bài toán luôn xác định. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

  

d) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9