Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề: \(1\le y\le x\le30\)GTLN \(P=\frac{x+y}{x-y}\)
Giải: Ta có: \(\frac{x}{y}\)>1
Ta có \(P=\frac{x+y}{x-y}\)\(=\frac{\frac{x}{y}+1}{\frac{x}{y}-1}-1+1=\frac{2}{\frac{x}{y}-1}+1\)
Để P Lớn nhất => \(\frac{2}{\frac{x}{y}-1}\) lớn nhất => \(\frac{x}{y}-1\)nhỏ nhất => \(\frac{x}{y}\)nhỏ nhất
Mà x>y nên đặt x=y+d
\(\Rightarrow\frac{x}{y}=\frac{y+d}{y}=1+\frac{d}{y}\), nên để \(\frac{x}{y}\)nhỏ nhất thì d nhỏ nhất và y lớn nhất có thể nên d=1 và y=29
Hay \(\hept{\begin{cases}x=30\\y=29\end{cases}}\)
GTLN P=\(\frac{29+30}{30-29}=59\)
x thuộc {-3; 3; -2; 2; -1; 1}
y thuộc {-5; 5; -4; 4; -3; 3}
học tốt
Bạn tham khảo nha:
https://olm.vn/hoi-dap/detail/66338852310.html
trước hết ta xét phân số \(\frac{9}{x}\)sao cho 11 phần 15 < 9 /x<11/13. Biến đổi để tử của các phân số này bằng nhau:
99/135 < 99/11x <99/117 suy ra 135> 11x > suy ra 12/3/11 >x >10/7/11
do đó x bằng 11 hoặc 12
suy ra : -11/13 <9/-11 <-11/15 ; -11/13<9/-12<-11/15
Gọi tổng trên là A.Ta có
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(2A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}+\frac{2}{195}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(2A=\frac{1}{3}-\frac{1}{15}\)
\(2A=\frac{5}{15}-\frac{1}{15}\)
\(2A=\frac{4}{15}\)
\(A=\frac{4}{15}:2\)
\(A=\frac{2}{15}\)