K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2021

lập bảng biến thiên cho phương trình f(x) = \(-2x^2-4x+3\)

x f(x) -1 5 nhìn bảng biến thiên ta thấy phương trình có nghiệm khi \(m\le5\)

10 tháng 12 2020

\(pt\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-4mx-4=0\left(1\right)\end{matrix}\right.\)

để pt có 3 nghiệm pb thì pt(1) phải có 2 nghiệm pb khác 1

+)xét th pt(1) có 1 nghiệm bằng 1

khi đó ta có \(1-4m-4=0\Leftrightarrow m=\dfrac{-3}{4}\)

suy ra để pt(1) phải có 2 nghiệm pb khác 1 thì \(m\ne\dfrac{-3}{4}\)

+)để pt(1) có 2 nghiệm pb thì ac<0\(\Leftrightarrow-4< 0\) (luôn đúng với mọi m)

vậy để pt có 3 nghiệm pb thì \(m\ne\dfrac{-3}{4}\)

2 tháng 1 2021

1)Tim cac gia tri cua m de phuong trinh (m2 - 1)x + m+1 = 0 co nghiem duy nhat.

                                            Giải

- Để phương trình có nghiệm duy nhất thì a ≠0 <=> m^2-1≠0 

                                                                         <=>m≠1 và m≠-1

NV
2 tháng 4 2021

Với \(m=0\Rightarrow-x+1< 0\Rightarrow x>1\Rightarrow\) pt có nghiệm (thỏa mãn)

Với \(m\ne0\) BPT vô nghiệm khi và chỉ khi:

\(mx^2+\left(2m-1\right)x+m+1\ge0\) nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta=\left(2m-1\right)^2-4m\left(m+1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-8m+1\le0\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{1}{8}\)

\(\Rightarrow\) BPT đã cho có nghiệm khi \(m< \dfrac{1}{8}\)

NV
12 tháng 9 2021

\(\Leftrightarrow x^3-3x^2+2-\left(3x^2-2x-1\right)m=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-2\right)-\left(x-1\right)\left(3mx+m\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(3m+2\right)x-m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(3m+2\right)x-m-2=0\left(1\right)\end{matrix}\right.\)

(1) luôn có 2 nghiệm pb. Để pt có 3 nghiệm pb \(\Rightarrow1-\left(3m+2\right)-m-2\ne0\Rightarrow m\ne-\dfrac{3}{4}\)

TH1: \(x_3=1\) và \(x_1;x_2\) là nghiệm của (1)

\(\Rightarrow3m+2=2\Rightarrow m=0\) (thỏa mãn)

TH2: \(x_1=1\) và \(x_2;x_3\) là nghiệm của (1)

Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_2=2x_3-1\\x_2+x_3=3m+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=2x_3-1\\x_3=m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=2m+1\\x_3=m+1\end{matrix}\right.\)

Thế vào \(x_2x_3=-m-2\)

\(\Rightarrow\left(2m+1\right)\left(m+1\right)=-m-2\)

\(\Rightarrow2m^2+4m+3=0\) (vô nghiệm)

Vậy \(m=0\)

12 tháng 9 2021

e cam on , vay em lam dung roi :^^

4 tháng 4 2021

TH1: \(m=2\)

\(pt\Leftrightarrow-4x+5=0\Leftrightarrow x=\dfrac{5}{4}\)

\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán

TH2: \(m\ne2\)

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\\\dfrac{2m}{m-2}>0\\\dfrac{m+3}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-m>0\\\dfrac{2m}{m-2}>0\\\dfrac{m+3}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m< -3\\2< m< 6\end{matrix}\right.\)

Vậy \(m\in\left(-\infty;-3\right)\cup\left(2;6\right)\)