Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi chiều dài và chiều rộng mảnh đất lần lượt là $a,b$ (m)
Theo bài ra ta có:
$a+b=100:2=50$
$(a+5)(b-5)=ab+5$
$\Leftrightarrow 5b-5a-25=5$
$\Leftrightarrow b-a=6\Rightarrow b>a$.
Chiều rộng > chiều dài? Nghe rất vô lý. Bạn xem lại đề.
nửa chu vi
160:2=80 cm
Gọi chiều dài là x (m) x>0
Chiều rộng là: 10 - x (m)
Chiều rộng lúc sau là; 10-x-5 = 5-x (m)
Chiều dài lúc sau là:x + 8 (m)
Theo đề ra ta có pt:
x(10−x)+400=(10−x)(x+5)x(10−x)+400=(400−x)(x+5)
⇔10x−x^2+400=.........
................
............. chỗ này tự trình bày nha
Gọi chiều rộng của mảnh vườn là x (m) (x > 0)
Chiều dài của mảnh vườn là 3x (m)
Diện tích mảnh vườn là 3 x . x = 3 x 2
Khi tăng mỗi cạnh lên 5m thì diện tích mảnh vườn là: ( 3 x + 5 ) ( x + 5 ) = 3 x 2 + 20 x + 25 .
Khi đó diện tích tăng thêm 385 m 2 nên ta có phương trình:
3 x 2 + 385 = 3 x 2 + 20 x + 25 ⇔ 20x = 360 ⇔ x = 18(tmđk)
Vậy chiều rộng của mảnh vườn là 18m, chiều dài của mảnh vườn là 18.3 = 54m
Gọi x(m) là chiều rộng của mảnh vườn ( x > 0 )
Chiều dài của mảnh vườn là 3x (m)
Diện tích mảnh vườn là 3x . x = 3x2 (m2)
Khi tăng mỗi cạnh lên 5m thì diện tích mảnh vườn là: ( 3 x + 5 ) ( x + 5 ) (m)
Khi đó diện tích tăng thêm 385 m2 nên ta có phương trình:
3x2 + 385 = 3x2 + ( 3 x + 5 ) ( x + 5 )
<=> 3x2 + 20x+25
<=>-20x = -360
<=>x = 18(tđk)
Vậy chiều rộng của mảnh vườn là 18m
chiều dài của mảnh vườn là 18.3 = 54m
Gọi a(m) là chiều dài của miếng đất(Điều kiện: a>0)
Diện tích ban đầu của miếng đất là: \(a^2\left(m^2\right)\)
Vì khi giảm chiều dài đi 4m và giảm chiều rộng đi 4m thì diện tích giảm 104m vuông nên ta có phương trình:
\(\left(a-4\right)^2=a^2-104\)
\(\Leftrightarrow a^2-8a+16-a^2+104=0\)
\(\Leftrightarrow-8a+120=0\)
\(\Leftrightarrow-8a=-120\)
hay a=15(thỏa mãn ĐK)
Vậy: Kích thước của miếng đất là 15m; 15m
Gọi chiều rộng là x
Chiều dài là x+12
Theo đề, ta có: \(\left(x-1\right)\left(x+14\right)=x\left(x+12\right)-8\)
\(\Leftrightarrow x^2+13x-14-x^2-12x+8=0\)
=>x=6
Vậy: Chiều rộng là 6m
Chiều dài là 18m
Gọi x(m) là chiều dài của miếng đất(Điều kiện: x>0)
Chiều rộng của miếng đất là: \(\dfrac{1}{3}x\left(m\right)\)
Theo đề, ta có phương trình:
\(\left(\dfrac{1}{3}x+3\right)\left(x-6\right)=\dfrac{1}{3}x\cdot x+18\)
\(\Leftrightarrow\dfrac{1}{3}x^2-2x+3x-18-\dfrac{1}{3}x^2-18=0\)
\(\Leftrightarrow x=36\)(thỏa ĐK)
Vậy: Chiều rộng ban đầu là 12m
Chiều dài ban đầu là 36m
Gọi chiều rộng là `x (m) (x>0)`
`=>` Chiều dài là: `3x (m)`
- Diện tích ban đầu là: `3x^2 (m^2)`
- Diện tích sau khi thay đổi là: `(x+3)(3x-6) (m^2)`
Theo đề, ta có PT: `3x+18=(x+3)(3x-6)`
Giải PT ta được: `[(x=6(TM)),(x=-6 (L)):}`.
Vậy chiều dài là `18m`, chiều rộng là `6m`.
Gọi chiều rộng mảnh đất lúc đầu là x (m), chiều dài là x + 5 (m), x > 0.
Diện tích mảnh đất ban đầu là x.(x+5) m2.
Chiều dài mảnh đất lúc sau là x + 5 + 3 = x+8 (m), chiều rộng mảnh đất lúc sau là x - 5 (m). Diện tích mảnh đất lúc sau là (x - 5)(x + 8) m2.
Theo bài ra ta có: x(x+5) - (x-5)(x+8) = 110.
Giải phương trình ta được: 5x -3x + 40 =110.
=> 2x = 70 => x= 35.
Vậy chiều rộng ban đầu là 35 m, chiều dài ban đầu là 40 m.
Chiều rộng: x (m) (x>0)
=> Chiều dài: 3x (m)
=> Diện tích ban đầu: x. 3x= 3x2 (m2)
Tăng chiều dài và chiều rộng mỗi bên 5m, diện tích mới là: (x+5). (3x+5)= 3x2+20x+25 (m2)
Diện tích mới tăng 385m2 so với diện tích ban đầu:
=> 3x2+20x+25 - 385 = 3x2
<=> 20x= 360
<=>x=18 (TM)
Vậy: Miếng đất HCN có chiều rộng 18m và chiều dài 54m