Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài và chiều rộng mảnh đất lần lượt là a và (m; a,b>0)
+ Mảnh đất có chu vi 70m
\(\Rightarrow2\left(a+b\right)=75\left(1\right)\)
+ Tăng chiều rộng 1m ,giảm chiều dài 5m thì diện tích mảnh đất giảm 60m2 so với ban đầu
\(\Rightarrow\left(a-5\right)\left(b+1\right)=ab-60\\ \Leftrightarrow ab+a-5b-5=ab-60\\ \Leftrightarrow a-5b=-55\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow hpt:\left\{{}\begin{matrix}2a+2b=70\\a-5b=-55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\left(TM\right)\)
Vậy chiều dài mảnh đất là 20(m) và chiều rộng mảnh đất là 15(m)
Nửa chu vi của mảnh đất là: 70:2=35(m)
Gọi chiều dài ban đầu của mảnh đất là a(m)(Điều kiện: \(0< a\le35\))
Chiều rộng ban đầu của mảnh đất là: 35-a(m)
Diện tích ban đầu của mảnh đất là: \(a\left(35-a\right)=35a-a^2\left(m^2\right)\)
Vì khi tăng chiều rộng thêm 1m và giảm chiều dài 5m thì diện tích giảm 60m2 so với ban đầu nên ta có phương trình:
\(\left(a-5\right)\left(35-a+1\right)=35a-a^2-60\)
\(\Leftrightarrow\left(a-5\right)\left(-a+36\right)=35a-a^2-60\)
\(\Leftrightarrow-a^2+36a+5a-180-35a+a^2+60=0\)
\(\Leftrightarrow6a-120=0\)
\(\Leftrightarrow6a=120\)
hay a=20(thỏa ĐK)
Chiều rộng ban đầu là: 35-20=15(m)
Vậy: Chiều dài và chiều rộng ban đầu là 20m và 15m
Nửa chu vi mảnh đất: 21m
Gọi chiều dài mảnh đất là x (với \(10,5< x< 21\))
Chiều rộng mảnh đất là: \(21-x\) (m)
Chiếu dài mảnh đất sau khi giảm 1m: \(x-1\)
Chiều rộng mảnh đất sau khi tăng 2m: \(21-x+2=23-x\)
Diện tích mảnh đất sau khi thay đổi kích thước:
\(\left(x-1\right)\left(23-x\right)\)
Ta có pt:
\(\left(x-1\right)\left(23-x\right)=121\)
\(\Leftrightarrow-x^2+24x-144=0\Rightarrow x=12\left(m\right)\)
Vậy mảnh đất ban đầu dài 12m, rộng 9m
Lời giải:
Gọi chiều dài và chiều rộng ban đầu của hình chữ nhật lần lượt là $a$ và $b$ (m)
Theo bài ra ta có:
\(\left\{\begin{matrix} a-b=12\\ (a-8)(b+5)=ab-13\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=b+12\\ 5a-8b=27\end{matrix}\right.\Rightarrow 5(b+12)-8b=27\)
\(\Rightarrow b=11\) (m)
$a=b+12=23$ (m)
gọi chiều rộng ban đầu của mảnh vườn HCN là : x (m;x>5)
chiều dài ban đầu của mảnh vườn HCN là : x + 12 (m)
diện tích ban đầu là x.(x+12) (m2)
chiều rộng lúc sau của mảnh vườn HCN là : x + 5 (m)
chiều dài lúc sau của mảnh vườn HCN là x +12 - 8 = x +4
diện tích lúc sau là : (x+4).(x+5)
vì diện tích lúc sau giảm đi 13m2 nên ta có phương trình :
x(x+12) - (x+4)(x+5) = 13
\(x^2+12x-x^2-9x-20=13\)
\(3x-20=13\)
\(3x=33\)
\(x=11\)
giá trị x =11 thỏa mãn điều kiện của ẩn
chiều rộng ban đầu là : 11
chiều dài ban đầu là : 11+12 = 23
Gọi chiều rộng hcn là x>0, chiều dài hcn là y>0
Ta có chu vi hcn là 40\(\Rightarrow\left(x+y\right).2=40\Rightarrow x+y=20\Rightarrow y=20-x\)
Vì tăng chiều rộng thêm 2m ,giảm chiều dài 2m thì diện tích tăng 4 \(m^2\)nên
\(\left(x+2\right)\left(y-2\right)=xy+4\Rightarrow xy-2x+2y-4=xy+4\)
\(\Rightarrow x-y+4=0\Rightarrow x-\left(20-x\right)+4=0\Rightarrow2x=16\Rightarrow x=8\Rightarrow y=12\)
Vậy chiều rộng của hcn là 8m , chiều dài là 12m
Gọi chiều rộng ban đầu là x
Chiều dài ban đầu là: x+17
Theo đề, ta có: \(x\left(x+17\right)=\left(x+12\right)\left(x+2\right)\)
\(\Leftrightarrow x^2+14x+24-x^2-17x=0\)
\(\Leftrightarrow-3x=-24\)
hay x=8
Vậy: Diện tích ban đầu là \(200m^2\)
TK::>>
Gọi chiều dài hình chữ nhật là a
Chiều rộng hình chữ nhật là b
Theo đề bài, ta có:
b=1/3a (1)
Nếu tăng chiều rộng thêm 5m và giảm chiều dài đi 5m thì diện tích tăng thêm 325m.Do đó, ta lấy diện tích tăng lên-diện tích phần giảm đi=325m
Ta có:5*(a-5)-5*b=325 m
5*a-5*b=325+25
5*(a-b)=350
=>a-b=350:5=70 m (2)
Từ (1)và (2) =>Bài toán có dạng tìm 2số khi biết hiệu và tỷ của 2 số đó.
Hiệu số phần bằng nhau là:
3--1=2phần
Chiều rộng hình chữ nhật ban đầu là:
70:2*1=35m
Chiều dài hình chữ nhật ban đầu là:
70:2*3=105m
Diện tích khu đất hình chữ nhật ban đầu là:
105*35=3675 m2
Đ s: 3675 m2
Gọi chiều dài ban đầu của mảnh đất là a(m)
Đk a>0
Khi đó: Chiều rộng ban đầu của mảnh đất là a-5(m)
Diện tích mảnh đất ban đầu là a(a-5) (m2)
Diện tích mảnh đất khi chiều dài mảnh đất giảm đi 5m và chiều rộng mảnh đất giảm đi 4m là: (a-5)(a-5-4) (m2)
Theo đề bài, ta có phương trình:
\(a\left(a-5\right)-\left(a-5\right)\left(a-5-4\right)=180\)
\(\Leftrightarrow a^2-5a-\left(a^2-5a-4a-5a+25+20\right)=180\)
\(\Leftrightarrow a^2-5a-a^2+5a+4a+5a-25-20=180\)
\(\Leftrightarrow9a-25-20=180\)
\(\Leftrightarrow9a=180+25+20\)
\(\Leftrightarrow9a=225\)
\(\Leftrightarrow a=25\)(thỏa mãn)
Vậy chiều dài ban đầu của mảnh đất là 25 m
chiều rộng ban đầu của mảnh đất là 25- 5 =20 m
Gọi x (m) là chiều rộng (x > 0)
⇒ x + 5 (m) là chiều dài
Chiều rộng sau khi tăng: x + 2 (m)
Chiều dài sau khi giảm: x + 5 - 3 = x + 2 (m)
Diện tích lúc đầu: x(x + 5) = x² + 5x (m²)
Diện tích lúc sau: (x + 2)(x + 2) (m²)
Theo đề bài ta có phương trình:
x² + 5x - 16 = (x + 2)(x + 2)
⇔ x² + 5x - 16 = x² + 2x + 2x + 4
⇔ x² + 5x - x² - 2x - 2x = 4 + 16
⇔ x = 20 (nhận)
Vậy chiều rộng của hình chữ nhật là 20 m
Chiều dài của hình chữ nhật là 20 + 5 = 25 m
Gọi x, y lần lượt là độ dài của chiều dài và chiều rộng (\(0< y< x,x>5\) )
Theo đề, có:
\(\left\{{}\begin{matrix}x-y=5\\\left(x-3\right)\left(y+2\right)=xy-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-y=5\\2x-3y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=25\\y=20\end{matrix}\right.\) (nhận)
Vậy kích thước lúc đầu của hình chữ nhật là: \(x.y=25.20=500\left(m^2\right)\)