Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Để hai đường song song thì m-2=2
=>m=4
c: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\x=\dfrac{-2}{m-2}\end{matrix}\right.\Leftrightarrow OA=\dfrac{2}{\left|m-2\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Leftrightarrow OB=2\)
SAOB=1
=>1/2*4/|m-2|=1
=>4/|m-2|=2
=>|m-2|=2
=>m=4 hoặc m=0
Gọi tọa độ A ; B lần lượt là A(x1 ; 0) ; B(0 ; y1)
Vì B thuộc (d) => y1 = (m - 1).0 + 3 = 3
Ta có khoảng cách từ O đến (d) = \(\frac{3}{\sqrt{5}}\)
=> PT : \(\left(\frac{1}{\left|x_1\right|}\right)^2+\left(\frac{1}{\left|y_1\right|}\right)^2=\left(\frac{1}{\frac{3}{\sqrt{5}}}\right)^2\)
\(\Leftrightarrow\frac{1}{x_1^2}+\frac{1}{y_1^2}=\frac{5}{9}\)
\(\Leftrightarrow\frac{1}{x_1^2}+\frac{1}{9}=\frac{5}{9}\Leftrightarrow\frac{1}{x_1^2}=\frac{4}{9}\Leftrightarrow x_1=\frac{3}{2}\)
Với x1 = 3/2 ; y1 = 9 => 9 = (m - 1).1,5 + 3 <=> m = 5
Vậy m = 5 thì khoảng cách từ O đến (d) là \(\frac{3}{\sqrt{5}}\)
a: Thay x=0 vào (d'), ta được:
\(y=2\cdot0-1=0-1=-1\)
Thay x=0 và y=-1 vào (d), ta được:
\(0\cdot\left(m-2\right)+m+1=-1\)
=>m+1=-1
=>m=-2
b:
(d): y=(m-2)x+m+1
=>(m-2)x-y+m+1=0
Khoảng cách từ gốc O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-2\right)+0\cdot\left(-1\right)+m+1\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}=\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}\)
Để d(O;(d))=1 thì \(\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}=1\)
=>\(\sqrt{\left(m-2\right)^2+1}=\left|m+1\right|\)
=>\(\left(m-2\right)^2+1=\left(m+1\right)^2\)
=>\(m^2-4m+4+1=m^2+2m+1\)
=>-4m+5=2m+1
=>-4m-2m=1-5
=>-6m=-4
=>\(m=\dfrac{2}{3}\)
a.
Giả sử điểm cố định mà (d) đi qua có tọa độ \(M\left(x_0;y_0\right)\)
Với mọi m, ta có:
\(y_0=\left(m+2\right)x_0+m\)
\(\Leftrightarrow m\left(x_0+1\right)+2x_0-y_0=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\2x_0-y_0=0\end{matrix}\right.\) \(\Rightarrow M\left(-1;-2\right)\)
b. Để (d) cắt 2 trục tạo thành tam giác thì \(m\ne\left\{0;-2\right\}\)
Khi đó ta có: \(\left\{{}\begin{matrix}A\left(-\dfrac{m}{m+2};0\right)\\B\left(0;m\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}OA=\left|\dfrac{m}{m+2}\right|\\OB=\left|m\right|\end{matrix}\right.\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{m^2}{\left|m+2\right|}=1\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2=m+2\\m^2=-m-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)