Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a. x= -5
b. x= -2 hoặc x=3
c. x=1
d. x < hoặc = 1/ -4
e. x < hoặc = 2
f. x < hoặc = 6/-5
2, a. AB= 90 km
b. AB= 80 km
Đổi 30 phút = 30 60 = 1 2 (h).
Với quãng đường AB là x (km), thời gian người đó đi hết quãng đường lúc đi là: x 30 (h); thời gian người đó đi quãng đường AB lúc về là: x 24 (h).
Theo đề bài ta có phương trình x 24 - x 30 = 1 2
Đáp án cần chọn là: C
Lời giải:
Đổi 45'=0,75h
Thời gian người đó đi: $\frac{AB}{50}$ (h)
Thời gian người đó về: $\frac{AB}{40}$ (h)
Theo bài ra: $\frac{AB}{40}-\frac{AB}{50}=0,75$
$\Leftrightarrow \frac{AB}{200}=0,75$
$\Leftrightarrow AB=150$ (km)
Bạn tách ra nhá
Thôi, mình làm câu 1:
Vì thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch
V xuôi/V ngược = T ngược/T xuôi = 40/30 = 4/3
Ta có sơ đồ:
T xuôi: |-----|-----|-----| 30 phút
T ngược:|-----|-----|-----|-----|
T xuôi là:
30 : (4 - 3) x 3 = 90 phút = 1,5 giờ
Quãng đường là:
1,5 x 40 = 60km
Đ/s:..
Vì quãng đường AB không đổi nên ta có :Đổi: \(45ph=\dfrac{3}{4}h\)
Gọi thời gian người đó đi từ A đến B là x (h) (x > 0)
Thời gian người đó từ B về A là
\(x-\dfrac{3}{4}\left(h\right)\)
Quãng đường người đó đi từ A đến B là 30x (km)
Quãng đường người đó đi từ A đến B là:
\(40.\left(x-\dfrac{3}{4}\right)=40x-30\left(km\right)\)
Vì quãng đường AB không đổi nên ta có :\(40x-30=30x\Leftrightarrow10x=30\Leftrightarrow x=3\left(h\right)\)Độ dài quãng đường AB là:
\(30.3=90\left(km\right)\)Bài 2: \(15phút=\dfrac{1}{4}\left(h\right)\)
Gọi độ dài quãng đường AB là x (km, x>0)
Thời gian xe máy đi từ A đến B là : \(\dfrac{x}{45}\left(h\right)\)
Thời gian xe máy đi về là : \(\dfrac{x}{40}\left(h\right)\)
Vì thời gian về nhiều hơn thời gian đi là 15 phút, ta có phương trình :
\(\dfrac{x}{40}-\dfrac{x}{45}=\dfrac{1}{4}\)
\(<=> 9x -8x = 90\)
\(< =>x=90\left(tm\right)\)
=> Thời gian đi là : \(\dfrac{90}{45}=2\left(h\right)\)
=> Thời gian về là : \(2+0,25=2,25\left(h\right)\)
\(Vậy...\)
Bài 3 :
\(2h15ph=2,25\left(h\right)\)
\(2h30ph = 2,5 (h)\)
Gọi vận tốc thực của ca nô là : x ( km/h , x>2)
=> Độ dài quãng đường AB khi ca nô xuôi dòng là : \((x+2).2,25 (km)\)
=> Độ dài quãng đường AB khi ca nô ngược dòng là : \((x-2).2,5 (km)\)
Vì độ dài quãng đường AB khi ca nô đi xuôi và ngược dòng là như nhau, ta có phương trình :
\((x+2).2,25= (x-2).2,5\)
\(<=> 2,25x + 4,5 = 2,5x - 5 <=> 0,25x = 9,5 <=> x = 38 (km/h) ( nhận)\)
Khoảng cách từ A đến B là : \((38+2),2,25= 90 (Km) \)
\(Vậy...\)
c) \(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow2\left(x-2\right)-\left(x+1\right)=3x-11\)
\(\Leftrightarrow2x-4-x-1=3x-11\)
\(\Leftrightarrow2x-x-3x=-11+1+4\)
\(\Leftrightarrow-2x=-6\)
\(\Leftrightarrow x=3\)
Gọi quãng đường người đi xe máy từ A đến B là x(km)(x>0)
thời gian người đi xe máy từ A đến B là \(\dfrac{x}{40}h\)
thời gian người đi xe máy trở về là\(\dfrac{x}{30}h\)
Theo đầu bài ta có phương trình
Đổi 45p=\(\dfrac{3}{4}h\)
\(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{3}{4}\)
\(\Leftrightarrow40x-30x=90\)
\(\Leftrightarrow10x=90\)
\(\Leftrightarrow x=9\left(tm\right)\)
Vậy quãng đường AB dài 9(km)